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NOTATION

dummy integration variable for area

surface area between the mass of material compacted by the landing
surface and the mass of uncrushed crushable material

horizontal planar projection of A¢y

surface area of lower portion of payload over which shear and/or
normal stresses act to decelerate payload

horizontal planar projection of Apo and, in the absence of shear
effects, Ap1

surface area between the mass of material compacted‘by the payload
and the mass of uncrushed crushable material

horizontal cross-sectional area in the volume V. of figures 3
and 4 (the volume that would lie beneath the landing surface if
there had been no crushing)

dimensional dummy integration variable used in equation (A27);
= /R? - r2

dimensional dummy integration variable used in equation (A29);
= 2 _ 2
= Rp Tp
dimensionless variable describing the relative motion of payload
qp—q
ekRp
maximum value of e during payload penetration
R |

identical to F.;(z) if ﬁg-y is substituted for =z

penetration; defined as in equation (A39)

dimensionless vertical crushing force acting over area Agp and
tending to decelerate the mass above A.;; defined in equation
(A36)

dimensionless vertical crushing force acting over area Ap; and
tending to decelerate the mass above Ap1s defined in equation
(A45)

general symbol for acceleration due to gravity

value of g on earth (32.17 ft/sec? herein)

value of g at the landing site (12.3 ft/sec? herein)



m(z)

mep.(y,e)

vi

local height of the volume which would lie beneath the landing sur-
face if there had been no crushing; the local height of V.; see
figures 2, 3, and 4

local height of the compacted volume of material compacted by the
landing surface; the local height of m¢;; defined in equation
(Al12); see figures 2, 3, and 4

local height of the compacted volume of material compacted by the
payload; the local height of mp;; defined in equation (A12); see
figures 2, 3, and 4 :

ge(SEA) €d Mg,
defined in equation (17) as | ———)— || —F———
UO €m m'pO + mCO

dummy integration variable for =z in equations (A37) and (A49)

ﬂszco
defined in equation (A39) as ————
MhoMmd8e

FRZOO

defined in equation (A33) as :
Mho'md&e

distance between the fictitious compacted region determined by €4
on the landing surface and that on the payload (or the payload
itself, in the absence of penetration); evaluated in equation

(5)

variable used as df% to define a length element of a rod of
crushable material; used in developing equation (All)

original mass of uncrushed crushable material; see figures 2(a),
3(a), and 4(a)

mass of material compacted by the landing surface; mass of V.;
see figures 2 through 4

mass of payload; see figures 2 through 4

mass of material compacted by the payload; see figures 2(c), 3(¢),

4(c)

first time derivative of mp;

o L . Mo * Mo - Mc
dimensionless mass defined in equation (A34) as

dimensionless mass defined in equation (A44) as




pen

RU

mu

mo

Ndes

Npd

qmax’quax

ds

Mpo * Tpl
dimensionless mass defined in equation (A42) as —
po

2
defined in equation (23) as

— 11 +
R 2€dnpmaxgeRp
1+ (meo/mpo)
2
[1 + (U02/2€dnpmaxgeRp)]

WCO

3
(P enge) TRy
for payload penetration with the simplified design)

defined in equation (24) as

defined in equation (25) as (see also eq. (26)

desired value of np
max
maximum permissible value of Np ax (2000 herein)

g 1loading with n as the payload deceleration

ple
maximum value of ny, that occurs during impact stroke

absolute displacement of uncrushed crushable material after
initial contact with landing surface; see figures 2 through 4

first time derivatives of q and dp

second time derivatives of q and dp

absolute displacement of payload after initial contact between
crushable material and landing surface; q, = q in absence
of payload penetration; see figures 2 through 4

values of q and qp at end of impact stroke

value of q (q = qp) at which payload penetration occurs or
would occur if unbonded

overall radius for spherical system

payload radius for spherical system

polar radial coordinate of point in A.;, where coordinate is
measured in a horizontal cross section for spherical
geometry; see figure 4(b) and equation (A25)

polar radial coordinate of point in Ay,;, where coordinate is
measured in a horizontal cross section for spherical

geometry; see figure 4(c)
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SEA
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viii

specific energy absorption; energy absorbed per unit weight of
the absorber; defined in equation (8) in terms of the
variables used herein

dimensionless dummy integration variable used in equation (A36);

time; used for time derivative interchangeably with dot

velocity of the uncrushed crushable material; defined in

dq
dt

value of U at the instant the crushable material hits the
landing surface (300 ft/sec herein)

ul

equation (Al6) as q

volume that would lie beneath the landing surface if there had
been no crushing; shown in figures 3 and 4; defined in
equation (Al4)

maximum values of V. and V.;, that is, the values reached at
the end of the impact stroke

compacted volume of material compacted by the landing surface;
the volume of m¢;

volume swept out by the payload as a result of the relative
motion of penetration; defined in equation (Al4)

compacted volume of material compacted by the payload; the
volume of mp;

dimensionless velocity of the uncrushed crushable material;

defined in equation (A54) as dg/dt . U = dy - w

/hmdgeRp /hmdgeRp

value of v at the instant the crushable material hits the
landing surface

dimensionless velocity of the payload; defined in equa-
dq,/dt de dyp

tion (A54) as — - ek 5 * %§. I
NpdgeRp

value of v at the start of payload penetration, if any




Cco

po

Yp

ymax’ypmax

Ys

VA
Zy

Zmax

z
Pmax

original earth weight of uncrushed crushable material, MeoLe

earth weight of payload, mpoge

dimensionless velocity of the uncrushed crushable material;
defined in equation (A33) as u
VNnpdgeR

value of w at the instant the crushable material hits the
landing surface

value of w at the start of payload penetration, if any
. . . . . . Nndfe
dimensionless time; defined in equation (A39) as t <
1%

dimensionless displacement defined in equation (A39) as

ﬂ_EZR_
Rp Rp
dimensionless payload displacement defined in equation (A54) as
9 _
—R—p—_eke+y

values of y and yp at end of impact stroke
value of y at the start of payload penetration, if any
dimensionless displacement defined in equation (A33)

value of z at np = npmax

value of 2z at end of impact stroke

qpmax
R

value of z at the start of payload penetration, if any

angle between normal to stressed area and direction of maximum
normal crushing stress

n
Pnax
Ndes

compacting strain of crushable material; more detailed
definition given following equation (1)
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€d

€k

ppR

fictitious value of ¢k assumed for design purposes; always less
than e

compacting strain when it is uniform throughout hypothetical
crushable material; ey determines the surface for stress evaluation
and can be specialized in governing equations for simplifying
approximations

value of ex for actual crushable material (0.8 herein)

angle shown in figure 4(c) and used in derivation of equation (A28)

dummy integration variable for vy

uniform density of hypothetical crushable material in swept-out
volumes such as V¢ in figure 4; pck can be specialized as zero
to neglect variable mass without implying a massless crushable
casing

uniform density of actual crushable material

payload packaging density; defined in equation (A43) as
Mho
(4/3)TRp®
Mno
defined in equation (A35) as ——————
(4/3) 7R3

"mostly normal" and '"mostly static' crushing stress of crushable
material, averaged over maximum possible stroke prior to compacting

maximum of o as defined in equations (2) and (A24)

normal stress on the payload prior to penetration

Spo under assumption 9po = pok = cénstant

vertical component of o

dynamic value of o, as defined following equation (A7)

vertical component of normal stress on the payload

angle shown in figure 4(b) and used in derivation of'equation (A27)

angle shown in figure 4(c) and used in derivation of equation (A28)




APPROXIMATE ANALYTICAL MODELS FOR LANDING ENERGY ABSORPTION,
INCLUDING THE EFFECT OF PENETRATION BY THE PAYLOAD
INTO ITS CRUSHABLE CASING
Robert W. Warner

Ames Research Center

SUMMARY

Two approximate analytical models are defined for a landing configuration
in which a spherical payload can sometimes penetrate into its crushable casing.

Results for both models are found to agree reasonably well with two previous
experimental measurements. Design examples are presented for an impact veloc-
ity of 300 ft/sec. These are based on choices of zero or "perfect' payload
bonding, and of either a balsa-like or honeycomb-like class of crushable mate-
rial. The greatest difference between the models for these examples is a 29-
percent discrepancy in the required maximum crushing stress. A particular
pair of examples gives the unexpected result that penetration can provide a
decrease in crushable material weight by a factor greater than 4 when the
honeycomb-1like class of material is required without penetration, but the more
efficient balsa-1like class is feasible with penetration.

INTRODUCTION

One means proposed for providing information on lunar and planetary
surfaces consists of an unmanned instrumentation system that is hard landed
(with or without terminal guidance) but designed to survive the impact. For
such a landing, a crushable casing is one means for absorbing landing energy
so the payload can survive and transmit information during and after the
impact. The advantage of this approach depends greatly on how light the
crushable casing can be made for a given impact velocity.

Various aspects of the design of crushable casings have been
investigated in references 1 through 9, but without including the effect of
penetration by the payload into the casing. The primary purpose of the pres-
ent paper is to evaluate that effect analytically. For this purpose, fairly
general equations of motion are derived for the payload and the crushable
material. These equations are then specialized for two approximate analytical
models in which the payload and casing are spherical. The analytical models
will be used in a number of design examples so that the effect of payload
penetration can be evaluated and also one model compared with the other. The
two models will also be compared with earlier models that do not permit
penetration and with the test results of reference 10 and a private
communication.!

1ponald R. Cundall, December 1967.




OUTLINE OF THEORY

Properties of Typical Crushable Material

Material properties are an essential input to the theoretical
development. A typical crushable material for landing impact energy absorp-
tion has a stress-strain curve similar to curve ABCDE in figure 1(a).  The
material is elastic from point A to point B, and there is rebound between
points D and E. (The rebound should be as small as possible.) Between points
B and D there is a large volume change; and the crushing stress is relatively
constant, with an average value o indicated by the horizontal dotted line
in figure 1(a). Point C, where the crushing stress begins to rise abruptly,
is called the compacting strain e and ranges from 0.6 for close-packed
crushable materials to nearly 1.0 for open crushable structures.

The area enclosed by the stress-strain curve ABCDE is the energy
absorbed per unit volume of crushable material. This energy is maximized for
a maximum permissible crushing stress (which determines the maximum landing
vehicle deceleration for a given configuration) if the stress-strain curve
approaches a rectangle. Hence the material is not strained beyond point D in
figure 1(a), where the stress is equal to the prior maximum (point B), even
though the stress could go higher as shown. If the initial peak at B is too
high to approximate a rectangle, it can sometimes be reduced by precrushing.
A less desirable alternative is to accept the stress-strain curve but modify
the load-deflection curve by changing the shape of the crushable material.

Stress-strain and load-deflection curves for balsa wood, plastic foam,
and honeycomb are given in references 11 through 14. These curves have been
determined by dynamic crushing tests and by nearly static tests of specimens
having uniform cross sections. Figure 1(b) is a sketch of a crushing test in
which the specimen is compressed uniformly across the cross section by a
plate, and figure 1(c) shows a test in which the specimen is penetrated by a
plunger. In both tests, the material crushes in layers at a loaded surface,
which may be at either end of the specimen in the case of the plate loading.

It should be noted that a certain (exaggerated) amount of material is
shown trailing outboard of the plunger in figure 1(c) due to shear resistance.
This shear effect, as well as friction, causes a difference in the crushing
loads of figures 1(b) and 1(c). In the case of balsa wood, however, refer-
ence 7 indicates that this difference is small, while reference 13 indicates
that it ranges from 5 to 15 percent (for a range of plunger sizes).

It should also be noted that dynamic and nearly static crushing tests
give different results. In fact, references 11 and 13 suggest ratios of
static to dynamic crushing stress from 0.69 to 0.73 for various materials.
Since the maximum velocity in the dynamic tests was 108 ft/sec, the dynamic

effect is probably not due to variable mass (i.e., the accumulation of crushed

‘material at a loaded surface) but rather due to damping and dynamic buckling
(i.e., coupling between vertical and horizontal velocity). Unfortunately,
the effects of higher velocities on damping and dynamic buckling are not
established for the present materials.

2




Summary of Fundamental Assumptions and Limitations

In contrast to the typical material just discussed, the material
assumed for theoretical analysis has a perfectly rectangular stress-strain
curve (a so-called "rigid plastic'" shape). This curve is represented by the
dashed lines in figure 1(a). It is shown bounded by the compacting strain ¢
and the average crushing stress o of the typical material. In this case,
the energy absorbed per unit volume will not match that of the typical material
perfectly, but the boundaries of the rectangle can be adjusted slightly if
need be.

There are a number of other analytical assumptions that pertain to the
crushable material, and there are several that do not. For convenience, all
fundamental assumptions and limitations are listed in the present section as
follows:

1. Rebound is assumed absent.

2. It is assumed that the effects of shear resistance, end fixity, and
Poisson's ratio are adequately incorporated in the analysis because
of their presence in the crushing tests that determine the so-called
"mostly normal' and "mostly static'" crushing stress (o, o,, and oy;
see Notation).

3. The "mostly normal" and "mostly static' crushing stress ¢ is also
assumed to incorporate the dynamic effects of damping and dynamic
buckling. This means that dynamic tests should be used to determine
o (or static dynamic ratios, such as those deduced earlier from ref-
erences 11 and 13, should be applied). The velocities in the
dynamic tests should not be large enough, however, to cause signifi-
cant variable-mass effects, which are incorporated (when desired) in
the present equations of motion.

4. Shear deformations, such as the trailing of material outboard of the
plunger in figure 1(c), are neglected.

5. Separate vertical rods of material are assumed to crush vertically
in the energy-absorbing process.

6. The material is assumed to compress to the same compacted strain
along any axis, regardless of the axis of maximum normal crushing
stress.

7. It is assumed that each particle in the uncrushed crushable material
is moving at the same vertical velocity at a given instant and that
the crushed material also has a uniform particle velocity, but a dif-
ferent one from that of the uncrushed material. This implies the
following corollary assumptions:

a. Each successive layer of crushable material undergoes a
jump in velocity as it moves from the uncrushed to the
crushed region.




10.

11.

12,

13.

14.

15.

16.

17.

b. The elastic stress waves that established the uniform
velocities must travel far faster than those velocities
(i.e., the uniform velocities are subsonic).

c. The deformation waves resulting from the elastic stress
waves must be small enough not to affect the uniform
velocities,

For landing geometries in which there is doubt as to where the crush-
ing by layers will start, it is assumed to start at the impacted end
of the crushable material (in keeping with experimental observations,
except at certain impact velocities too low to be of interest).

Thus, if figures 1(b) and 1(c) were considered to represent impact
tests, the location shown for the crushed material requires that the
material has been impacted by the plate or the plunger. If the
crushable material had impacted the landing surface in figure 1(c),
with the plunger resting on top of the material, there would have to
be some crushing at the landing surface in conjunction with the
plunger penetration (or '"payload penetration').

It is assumed that there is no section of crushable material weak
enough to permit penetration by any crushable material (i.e., pene-
tration by anything but the payload). The validity of this assump-
tion is investigated in a later section.

The density of the crushable material is assumed uniform in the
uncrushed condition.

The compacting strain of the crushable material is assumed uniform.
Pure vertical translation is assumed.
The analysis neglects all ringing and focusing of stress waves.

A weightless exterior cover for the crushable material is assumed
that is strong enough to prevent shattering of the crushable mate-
rial. (For comparison with the experimental results of Cundall and
of reference 10, however, the mass of the cover employed is assumed
uniformly dispersed throughout the crushable material.)

When there is payload penetration, that is, relative motion between
the payload and the crushable material, the two are assumed perfectly
unbonded. This rules out the interesting design possibility of pene-
tration despite bonding and means there is no need to include the
effect of tensile stresses over the upper surface of the payload.

It is assumed that the landing surface is perfectly flat and
perfectly rigid.

Perfect rigidity is assumed for the payload.




Summary of Analytical Development

The general vertically symmetrical landing geometry without tipover or
horizontal velocity is illustrated in figures 2 and 3, which are used for
developing the governing equations and for the definition of terms. (Note that
with gravity terms being small, '"vertical' can be any direction that is both
parallel to the resultant impact velocity and normal to the landing surface.)
In figure 2 the major limiting assumption is the absence of shear deformation
(i.e., there is no compacted material dragged outboard of the payload and no
compacted material lifted off the landing surface).

Evaluation of the stress integrals and variable masses in the governing
equations is greatly facilitated by introducing the compressive compacting
strain e and assuming that it is uniform throughout the crushable material,
that 1is,

e = g = constant (D)

Figure 3 shows the general vertically symmetrical landing geometry for zero

shear deformation and the assumption of equation (1). The latter assumption
is illustrated by the fact that hp; 1s constant and me; is a foreshort-

ened image of V.

Figure 4 specializes the geometry to concentric spheres (although most
of the resulting simplifications would be realized as well by concentric
spherical segments).? It is further assumed that the crushable material has a
specific direction for maximum normal crushing stress, that the material has
been segmented and oriented to make that direction radial, and that stressed
areas with normals differing by an angle o from that radial direction feel
normal stresses o determined by the law

0 = 0y COS O , o < 90° (2)

where the restriction o < 90° is required since the load has to be trans-
ferred from the lower to the upper hemisphere of crushable material, and
where the restriction is automatically met in all calculations for nonzero
payload radius. (See ref. 5 for alternate anisotropic relationships.)

Governing equations corresponding to the summary just given are
developed in appendix A. They are specialized for various combinations of
the following independent assumptions:

1. Neglect of variable mass effect. In this assumption the accumulation
of crushed casing material on the payload and/or the landing surface
is neglected. The assumption is accomplished by setting pcx = 0.

2The spheres were selected because of their ability to absorb impact
energy in any direction (i.e., to handle unoriented impacts). Such impacts
may occur due to aerodynamically unstable landing configurations, a strong
laterial wind with a steep landing surface, or terminal guidance failure or
absence.




2. Neglect of built-up material effect. In this assumption stresses are
evaluated at the surface of infinitely thin sheets of crushed mate-
rial rather than built-up volumes. The assumption is accomplished
by setting eg = 1.

3. Neglect of variable resistance to payload penetration. In this
assumption the stress and force on the payload retain their initial
penetration value for the entire penetration stroke. The assumption
is accomplished by setting Fpo(e) = 1.

Appendix A is presented because a relatively complete theoretical
development, including variable mass, built-up material, and payload penetra-
_tion, is needed in the literature. The development is relegated to an appen-
dix because the details are not needed to understand the rest of the report.
If the reader wishes to locate a specific result or derivation, he can refer
to the various subdivisions of appendix A listed in the Table of Contents.

DESIGN PROCEDURES FOR SPHERICAL GEOMETRY

General Design Conditions

The zero-velocity termination conditions defining the end of impact are
equations (A46) and (A47). For a minimum weight design, the termination con-
ditions should occur when the payload or the compacted material built up on
it (in the case of payload penetration) touches the compacted material built
up on the landing surface, that is, when the sphere of radius Rp touches
the region m¢; in figure 4(b) or when the two compacted regions touch in
figure 4(c). The size of the compacted regions is based on the true material
compacting strain ep. The quantity ep is identical to the ek of equa-
tion (1) except for the optional use of fictitious values for ek 1in the
equations of motion of appendix A. If a margin of safety is desired, larger
compacted regions can be envisioned on the basis of a fictitious design
compacting strain called ed, where

€4 < ep (3)

If L 1is defined as the distance between the fictitious compacted
regions at the end of the impact stroke, or between one such region and the
payload, then the design condition for contact is

L===2-=0 (4.)

where Ry is the payload radius and R the overall radius. With ek
replaced by €4, it can be deduced from equations (Al2) and figure 4 that

(5)




where is the maximum absolute payload displacement during impact.

Pnax
If qpax is the corresponding displacement of the uncrushed crushable mate-
rial, then UPpax = dmax in the absence of payload penetration. When

L > 0, the process is physically realizable, although not a minimum weight
design for the present spherical geometry. When L < 0, the process is not
physically realizable; but cases for L < 0 may be recorded in the process of
seeking L = 0.

A second design condition, having a less obvious relation to minimum
weight design, is concerned with the maximum design deceleration npgge,
where g, is the acceleration due to gravity on earth and npg the maximum
design g 1loading. If np ox8e is the actual payload maximum deceleration,
the design condition is

n
Pmax
— s (6)
Nnd
For certain types of energy absorbing material or structure, the minimum
weight design calls for
Prax
—2 - 7
Mg

For other types, any value of anax/nmd satisfying equation (6) may yield a

minimum weight design, with the critical parameter being a property of the
crushable casing (such as og).

The quantity npmax/nmd in equations (6) and (7) is the maximum of the
quantity np/nmd in equations (A32) and (A41). (See also eqs. (A48), (AS1),

(A55), and (A59) for various specializations.) If variable mass and built-up
material are neglected in the analysis (by setting pex = 0 and ex = 1,
respectively), then Np . occurs at q = qQp = R/2 in the absence of payload

penetration, providing q or dp becomes that large.

A minimum weight design is sought for a given payload mass, Mpo s
payload radius, Ry, impact velocity, Uy, design compacting strain, eq, and max-
imum permissible g loading, npd, with the material choice being arbitrarily
limited to two classes of crushable material. Where equation (7) gives the
minimum weight design, the quantities to be determined are the overall radius,
R, the maximum normal stress, o,, and the density, p.,, of the crushable mate-
rial (from which the weight can be calculated). If the optimization permits
equation (6), then a property such as oy must be specified; and R and pep
remain to be determined (with np . @ by-product). In either case, the

determination requires that a relation between o, and pop be known for the
crushable material, thereby effectively reducing the number of unknowns by
one.




The required relation between o4 and poy can be determined
experimentally for a variety of materials and stated directly as in refer-
ence 2 (p. 259). It is common, however, to introduce a parameter for which
values are widely known, namely, the specific energy absorption (SEA) which

is defined as
Oo
SEA = ¢ 8
M\ pcm8e (&)

and which should generally be as large as possible. The relation between

0o and pop can be expressed by giving SEA in terms of o0,. With o =0
and € = ey, the product o4ey, 1is the area enclosed by the dashed lines in
figure 1(a), which is the energy absorbed per unit volume. Dividing this

product by pcepfe gives equation (8) and shows SEA to be the energy

absorbed per unit mass.

o]

Figure 5 shows the variation of SEA with o, for a balsa-like class
of material and a honeycomb-like class of material (neglecting glue-joint
weight and the effects of high impact velocity and low temperature). The
equation for SEA in terms of o, given for the balsa-like material in fig-
ure 5 is

SEA = 24,000 ft-1b/1b , 800 psi = o, £ 1,200 psi
. ' 9
SEA = 145%51%—-ft-1b/1b , 1,200 psi S oo S 1,800 psi
8
Go'

The balsa-like material is balsa in the sense that the second of equations (9)
is deduced from the curve fit of reference 2 (p. 259) which closely approxi-
mates the data therein for solid balsa of various densities. The material

is considered to be only balsa-like, however, because the first of equations
(9) and the dashed portion of the balsa-like curve in figure 5 are assumed to
be valid for a hypothetical cored balsa (for which cores of material are
removed in the radial direction). The assumption is that roughly one-third
of the material can be removed from the lightest (lowest density) solid balsa,
giving a o, range from 800 to 1,200 psi, without reducing the SEA by
introducing significant buckling, end effects, and/or Poisson's ratio effects;
and this assumption seems reasonable., It should be noted that the only cor-
roborative case where SEA decreases with increasing o, in reference 4 is
for dry balsa (0-percent moisture), atmospheric pressiure, and an ambient tem-
perature of approximately 78° F.

The curve for the honeycomb-like material is presented in figure 5 so
that results can be deduced for lower SEA values and also for the relatively
common case where SEA increases with increasing og,. The equation given in
figure 5 is

SEA = 478.5 o,0+4%6 ft-1b/1b 600 psi £ o, £ 1700 psi (10)




The material is called honeycomb-like rather than a specified honeycomb
because equation (10) is deduced from a curve fit in reference 2 (p. 259)
that rather loosely fits data for several types of aluminum and fiberglass
honeycomb having a variety of densities. It should be noted that reference 2
makes no mention as to whether equations (9) and (10) incorporate the dynamic
effects of damping and dynamic buckling (see item 3 in "Summary of
Fundamental Assumptions and Limitations').

Design Procedure for Simplified Model Without Payload Penetration

For the analytical model labeled "simplified" in the present report, it
is assumed that variable mass can be neglected (setting pcx = 0), that built-
up material can also be neglected (ex = 1), that gravity forces are insignifi-
cant (g = 0), and that the resistance to payload penetration is constant
(Fpo(e) = 1). Under the first three of these assumptions (with the last
required only for penetration), equations (AS55) and (A62) apply (in a simpli-
fied form with g = 0) and the division of the latter by the former gives
(with definitions from eq. (A54))

2wy - t@my,

Vo2 Uy2 v
o _ ° _ ‘max max (11)
Np/Mpd ~ NpgeRp y[(R/Rp) - V]

Equation (A55) is a parabola with np o, aty = (R/Rp)/z. Hence, for the
present restrictive case, np e is the acceleration at 1y, .. as long as

Ymax = (R/Rp)/z. If Ymax 2 (R/Rp)/z, np o Ze is the acceleration at

y = (R/Rp)/z. Thus equation (11) can be expressed in terms of np .. as
2 -
Uo® Yyl - (/3 Rp/Rypgy] , s1R 1)
anaxgeRp 1 - (Rp/R)ymax g max 2 Rp
2
_______(_ ) L IR o
anaxgeRp R “max 3 R “max max 2 Rp

If equations (12) and (13) are multiplied through by Rp/R and if the first
of equations (AS54) is used (giving vy = zmax(R/Rp)) the result is

max
2 -
Uo B Zmax[1 (2/3)Zmax] <1
n g R~ 1 -z ’ ’max - 2 (14)
Pmax®e max
9

O
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2
UO 2 2
R 4Zmax L - 3 “max |’ Zmax
nPmaxge

1

5 (15)
Equations (14) and (15), which are applicable only in the absence of

payload penetration, are plotted in figure 6 as z,,, versus Uoz/(npmaxge)R

Figure 6 can be used to determine Zmax = qmax/R on the basis of U,, R,
and Np s and the payload radius Rp simply has to be small enough not to
interfere with q
max
An interesting feature in figure 6 is that zp,yx 1is determined with no
knowledge of g, mcp, Or mpy. Once Zmax is known, however, m¢, can be
found for a given mho and o, according to

3
2ﬂ00R 5 2

m., = ——1;7;— %nax(} - §'Zmax> - My | (16)
o

as derived from equations (A62) and (A39) with g = 0. It is still not
necessary to know R,,. For a minimum weight design, however, R, must be
known or determined; and equation (4) must be satisfied according to the
definition in equation (5). In addition, the SEA , as defined in equation
(8), may be known instead of o5. When equations (4), (5), and (8), with
Zmax = 9max/R = qpmax/R and mg, = (4/3)ﬂpcm(R3 - Rps), are introduced into

equation (16), the result is

o= ge(SEA) <ié><% mcom > _ 1 - (Zmax/gd) * [(Zmax/ed)z/s] (17)
co

g\ 2 [(1/2) - (2 /3]

U m
o max

where the symbol Jp,; is introduced for convenience. Equation (17) can be
used to determine mgo for a given zpyx (wWhich implies knowledge of Ug and
ge as indicated in fig. 6) if ed, em, SEA, and mpo are known (with ep
actually canceling the same quantity in SEA). In figure 7, equation (17) is
plotted for eq = 0.7, 0.8, and 0.9. The three cross-plotted values of Rp/R
serve as a reminder that figure 7 represents a design for which contact would
occur between the payload and the compacted material if that material had a
compacting strain of e4q instead of ¢ (see the sketch, fig. 7).

In the absence of payload penetration, figures 6 and 7 are sufficient
for the simplified model if R 1is given and R, is to be determined. If
Rp is given, figures 6 and 7 remain useful as a check and as a means of
determining zpax, but two different figures, based on Rp, are more useful
for the original design. The first of these is determined by introducing
equations (4) and (5) into equations (13) and (12) as a substitute for

Ymax = 9max/Rp = ap_ .. /Rp, yielding

10




U02 ) 4€d2[1 - (Rp/R)]2 1 - (2/3)e4ll - (Rp/R)] R_p< 1
n g R R/R A T
Pnax_€ P P d
(18)
UO?- ] eqll - (Rp/R)] |1 - (2/3)ey4ll - (Rp/R)], L1 E.p_s ,
n g R~ ’ 2¢, — R~
PnaxZe p (Rp/R) | 1 - eyl - (RP/R)]} d o

Equations (18) and (19) are plotted for eg4 = 0.7, 0.8, and 0.9 in figure 8.

Figure 9 is the companion to figure 8 and is found by using equations
(4) and (5) to define a replacement for 2z, . = dpax/R = quax/R in equa-

tion (17). The Rp/R found in figure 8 then determines Jps in figure 9,
and Jp, determines mgc, as before. The sketches in figures 8 and 9 show
the same design configuration as that in figure 7, leaving figure 6 as the
only one for which contact is not required for compacted material based

on €4.

Design Procedure for Simplified Model With Payload Penetration

Payload penetration was not permitted in figures 6 through 9 (because
of a hypothetical perfect bond). If penetration is now permitted (because of
the total absence of bonding), the first step is to determine whether it will
occur. It will occur if the design without penetration gives

z > zg : (20)

where zg is the dimensionless displacement at which the area of material
being crushed becomes large enough to cause sufficient deceleration for pene-
tration. The quantity zg is defined by equation (A58) as modified by the
change of variable, yg = zS(R/Rp). The modified equation, plotted in figure

10, is
R 2
p Meo )
<§"> (1 ' 1111,—;;;) = 225(1 - zg) (21)

The curve is cut off at zg = 0.5, which is the maximum value at which pene-
tration can occur for the present approximation (as seen by the maximum force
in eq. (A52)). Figure 10, while not ultimately essential for design purposes,
is useful as a check, and the magnitude of zg 1is significant in evaluating
the importance of penetration or potential penetration.
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The first of the two main design figures for penetration is based partlf
on the first of equations (A59) and the last of equations (A39) with g =10
and Ny =np .. = constant. This yields, as expected for the present

assumptions,

7R 2o
np = _P° (22)
max mpo ge

Equation (22) is used, together with equation (21), equation (A64) for g = 0,
the last of equations (A39), the first and second of equations (A54), and

equations (4) and (5) for 2prax =z qpmax/R’ to identify the variable Npy as

follows:
. Rp . U2 1 z, |1~ (4/3)z ,
RU:'}T" = R 23)
2€dnpmaxgeRP €d 2(1 - zg)

The purpose in isolating NRy 1is to obtain a single unknown (Rp/R) in terms
of zg and eg, with a factor that is a function of known quantities (Ug, €d,

Np axe 8es Rp)} The next step is to isolate a variable for mco/mpo without

Rp/R. This is accomplished by dividing equation (21) by the square of equa-
tion (23). The resulting variable, called Nyy, is

N _ 1+ (mco/mpo) 225(1 - ZS)

B R O R [T PR VZIcu )

(24)
Figure 11 is a plot of Npy versus Ny, for eq = 0.7, 0.8, and 0.9.
The plot is constructed by selecting numbers for zg between 0 and 0.5 and
calculating the corresponding values of Npy and Npy according to equations
(23) and (24). A relationship between R and m¢o is established in figure
11 in terms of the known quantities Ug, €4, Np v 8Bes Rp, and Mpo (in con-

trast to fig. 8 without penetration, where R can be determined from known
quantities and used in determining m., in fig. 9). The sketch in figure 11
shows the design condition implicit in equations (4) and (5) for penetration,
namely, contact between the two regions of compacted material if ep were
replaced by eg.

A definition and a volume density relationship are useful at this point,

namely:
N = Wpo (Meo/mpo) — Weo _ Mo _af(rRY (25)
= = = 3 3 R

mo 3 3 P
(pcmge)pr (0 me) ™Rp pcman

where Wpo and Weo are the original weights of the payload and crushable
material, respectively. Equation (25) is plotted in figure 12; it is useful

I
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with or without payload penetration and does not depend on any assumptions.
For the case of payload penetration, however, and for the special assumptions
of the simplified design, equation (22) applies and can be substituted into
equation (25) with equation (8) to give

Meo
Ny = —SEA ; (26)
Pppaxtm'p \ Mpo

With equation (26), mco/mpo can be determined from Np; without knowing ocp-.
Thus figure 12 becomes the companion for figure 11 in an iterative design pro-
cedure for payload penetration. The procedure is simply to select an initial
value for mco/mpo, calculate Npy in terms of mco/mpo and known quantities,
determine Npy from figure 11, evaluate Ry/R in terms of Npj and known
quantities, determine Npg from figure 12, calculate a second value of
Meo/Mpo in terms of Npg and known quantities, and repeat the process until
two values of mco/mpo agree to the accuracy permitted by the figures.

The iterative procedure just described could have been avoided, of
course, by combining equations (21) through (26) into a polynomial for zg.
This polynomial could be solved for selected parametric values of

2 .
Uy /ZednpmaxgeRp and SEA/npmaXeme, together with values of eq such as those

selected for the iterative charts, and Rp/R and mco/mpo could be determined
accordingly. Such a procedure was avoided, however, because of the strong
likelihood that a reasonably limited group of parametric values would not have
sufficiently broad applicability.

Specialization of Design Procedures for Simplified Model
to Materials of Figure 5

Regardless of whether penetration is absent or present, it is apparent
that all of the design figures (6 through 12) are essentially independent of
the material or structure selected for energy absorption. - To calculate mgq
from figures 7, 9, and 12, however, an SEA has to be selected. With mgq
and R determined by the figures and Rp known in advance, p., can be calcu-
lated (with the aid of fig. 12 if desired); and o, can then be found for the
selected SEA according to equation (8). All this implies the assumption
that a material having the calculated properties is available or that a
corresponding structure can be constructed.

For the comparison purposes of this paper, however, the materials are
restricted to a choice between the two classes described in figure 5. With
figures 6 through 12 having been constructed independently of figure 5 (in
the interest of generality), the use of figure 5 imposes a trial-and-error (or
transcendental) solution for those designs in which payload penetration is
absent. The trail-and-error solution is aided by incorporating equations (8)
and (25) into equation (17) to yield

emImo
SEA = (27)

(8e€d/Uo?) - (Img¥po/ToNmo™Rp?)
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On the basis of given values of em, ge, €d, Uo> Wpo» Rps and Np o plus

values of Jpg and Nps determined according to figures 8, 9, and 12, the
quantities emJygs geed/Uo , and ngWPO/ngpr in equation (27) can be
calculated in advance. Equation (27) and figure 5 then become the basis for
the numerical solution.

A sample calculation for the trial-and-error solution just described is
given in appendix B. It should be noted that the trail and error of appendix
B would have been eliminated if the SEA had been constant - despite varia-
tions in oy, as for the balsa-like curve in figure 5 when o, < 1,200 psi.
There is, however, another type of trial and error that occurs when a spe-
cific value of o4, rather than Npax? is sought. In this case, calcula-

tions like those in appendix B (but without the o5 - SEA trials) must be
performed for successive selections of np o until o, approaches the
desired value.

If (in contrast to appendix B) payload penetration is present, the use of
the specific materials in figure 5 does not impose a trail-and-error solu-
tion. The reason is that the unknown m;, does not appear in equation (22).
In addition, the simplicity of equation (22) means that either o, or np
can be selected without requiring trial and error.

A sample calculation for the iterative penetration procedure described
earlier is given in appendix C for the balsa-like material of figure 5.
Only three iterations are needed in appendix C because of a fortunate initial
guess of mco/mpo The initial guess was based for all calculations on other
penetration cases or prior examples without penetratlon, and the worst guess
required five iterations. When a penetration design is not feasible, either
the oo value of equation (22) will be beyond the range of figure 5, or the
iterations will move off the curves of figures 11 and 12,

Computer Procedures

A set of three computer procedures has been programmed to evaluate the
governing equations of the impact problem for spheres (eqs. (A32), (A37), and
(A41)) in accordance with the appropriate termination conditions (eqs. (A46)
and (A47)) and the appropriate design conditions (eqs. (4), (6), and (7)).
These procedures are described in appendix D. They can be used to check the
simplified model designs or to initiate simplified designs and other designs
based on more complicated models.

Specifically, of the three computer procedures, two are designs in that
they automatically iterate initial guesses to determine required crushable
casing parameters. One of the two design procedures varies the overall radius
R and the material maximum crushing stress o, to achieve a desired accel-
eration, as indicated by equation (6) or equation (7), and a desired ratio of
stroke to available stroke, as suggested by equation (4). This program is
applicable only in the absence of payload penetration. The other design
varies only R for a selected o, (fixed material once SEA or a plot of

14




SEA versus o, 1is selected) and achieves only the desired stroke ratio. It
applies both with and without penetration.

Penetration requires only a search for R since o, is essentially
determined in that case regardless of R or the stroke. The reason becomes
apparent when the first of equations (A41) is modified at the start of pene-
tration (e = de/dx = 0) by equations (A45), (A42), and the last of equations
(A39) to give the expected result

mR 200
P B i o8)
max e MhoLe

where the approximate equality sign is used because n differs slightly

Pmax
from the value at the start of penetration for the detailed model (by at most
one part in a thousand for the present examples). Equation (28) determines
o, for a given np regardless of R or the stroke.

ma

The third computer procedure can also be used with or without penetration
but is not programmed to iterate and produce a design. Hence it can be used
only to check a given configuration.

It should be noted that all three programs permit SEA to be selected
arbitrarily or calculated (after o, is selected) according to equations (9)
and (10) for the materials considered herein.

Design Procedure for Detailed Model With and
Without Payload Penetration

The detailed model is the second of the two approximate analytical
models. Where the simplified model had pck = 0, e =1, g = 0, and
Fpo(e) = 1, the detailed model has Pck = Pems €k = €ps & = EL, and from
equation (A45),

1 (esp + l)sp dsp

Fpo(e) = 2

The pck = pep equation means that the detailed model incorporates variable
mass (accumulating on the payload and/or the landing surface) according to
the crushable material density, and ey = e, implies a finite volume of
compacted material instead of an infinitely thin sheet to determine the sur-
face for stress evaluation. The equation g = g, simply incorporates a
negligibly small gravity term for completeness, and the integral for Fpo(e)
permits a calculated deviation from a constant resistance to penetration.

While the computer procedures described in the previous subsection
constitute an alternative to figures 5 through 12 for the simplified model,
they constitute the only design procedure presented herein for the detailed
model. Of course, figures 5 through 12 remain useful as starting points for
the computer iterations.
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DESIGN RESULTS AND DISCUSSION FOR SIMPLIFIED AND DETAILED
MODELS HAVING SPHERICAL GEOMETRY

Description of Design Examples and Most General Results

Thirteen examples have been calculated by the simplified and detailed
analytical models described in the previous section. The impact velocity
U, is taken to be 300 ft/sec for all examples, the material compacting
strain e to be 0.8, the design compacting strain eq to be 0.7, and the
payload maximum g Iloading npmax to be 2000 or less. The examples vary

in the given payload weight Wy, the given payload radius R,, the presence
or absence of a hypothetical perfect bonding, and/or the given material.

All examples are based on a choice between two classes of crushable

material - the balsa-like and honeycomb-like materials defined in equations
(9) and (10) and shown in figure 5. The desired value of npmax (for which

the label nges 1is used where needed) is given for some examples and the
maximum crushing stress o, for others.

The results for all examples are presented in table 1 in terms of the

presence or absence of penetration, the value of np (if not given) or of
max

0o (if not given), the crushable material demsity pcpge, the specific energy
absorption SEA, the stroke-to-potential-start-of-penetration ratio qpm x/qs,
a

the overall radius R, the crushable material weight W.,, the total weight
Weo + Wy, and the dimensionless unused stroke L/R. When L/R 1is negative,
the paygoad would go too far (slightly, for the present examples) and cause
excessive accelerations if it were not for the stroke margin of safety given
by the use (in defining L/R) of the fictitious design compacting strain eg
rather than the material value ep.

The resulting quantities just listed are presented for the simplified
and detailed models in table 1; the corresponding ratios of detailed to sim-
plified results are presented when the results are numerical. It is apparent
from the W., ratios that the simplified model has the lower Wcq.

An important ground rule for the ratios of table 1 is that either the
0o ratio or the ny ratio is required to be essentially unity. The
max

choice is made, after the simplified model has been calculated, in favor of
the lightest resulting detailed model. This gives the best weight ratio,
that is, the ratio closest to unity.

In view of this choice, it is not surprising that the worst o, or n,
max
ratios (of detailed to simplified results) are farther from unity than the

worst weight ratios. In fact, the worst ratio of all is 1.2917 for o, in
case 1 (except for L/R, where numbers approach zero, fortunately). This
ratio, although not excessively different from unity, represents a large
enough difference in required material (within the honeycomb-like category of
case 1) that a designer would wish to know whether the simplified model is
numerically more realistic than the detailed model or vice versa.
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In a footnote of table 1 it is noted that the simplified results are
"chart" results (derived from figs. 5 through 12) except for the L/R column
and cases 7 and 12, which are automatic computer results. The two cases
(both without penetration) were added after the computer design programs
became available and were calculated by those programs for convenience.

The simplified results determined by the chart method have been checked
by the computer checking program (as opposed to a design program). The
derived computer quantities n, and 9p /qg had a maximum error of 1

max max
percent relative to the chart method, and the derived computer quantity L/R
was close to zero (ranging from -0.001781 to 0.001163 with an average of
-0.000194) as compared to a zero chart value. Slightly larger differences
between the chart method and the computer checking method occurred for W,
and W., + W,o, but these differences resulted purely from errors in calcu-
lating crushable material volumes in the chart method. The chart and compu-
ter results combined to form smooth plots for the simplified model, as seen
in figures 13 and 14.

All numerical results from table 1 are plotted in figures 13 and 14
except for W¢q + Wpo (which is considered less important than W.,), L/R
(which is often sporadically variable in sign), cases 3, 5, and the detailed
model for case 2 (which will be discussed later). Note that the curves for
the simplified and detailed models are roughly parallel (and only slightly
curved) over their mutual abscissa range. Hence trends are the same for the
two models. Even the crossover in figure 14(d) for quax/qS without pay-

load penetration is almost parallel and thus maintains the trend with only a
slight comparison reversal between models.

Effect of Payload Radius (and Payload Packaging Density)
for Balsa-like and Honeycomb-like Materials
Without Payload Penetration

Crushable casing properties and performance are presented in figure 13
(with and without penetration) as functions of payload radius Ry (with four
numbers attached for payload packaging density ppge) for honeycomb-1like
material, a payload weight of 100 1b, and an npmax value of 2000. The cor-

responding cases in table 1 are 1, 4, 6, and 7 without penetration and case 2
(simplified model only) with penetration.

In the absence of payload penetration, figures 13(a), 13(b), and 13(c)
show that an increasing R, {(decreasing ppge) causes W.,, SEA, R, o0y, and
Pemge to increase (with Np held at the maximum permissible value of

2000, which minimizes W., according to preliminary calculations). The poten-
tial penetration ratio qpmax/qs exists only for the simplified model at

Rp = 0.6 ft (among the plotted points), indicating penetration to be impossible
for the other cases. Between the two models, the simplified model has the
lower W., (slightly), the lower SEA, the higher R, the lower og, and the
lower pcm8e. The lower pepmge 1is the only apparent reason for the lower
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Weo. It results from the lower o4, which is made possible by the fact that
the simplified model sees a higher average stress for a given o, than does
the detailed model.

Somewhat similar curves are shown in figure 14 for balsa-like material
and a payload weight of 450 1b (the cases from table 1 being 8, 10, 12, and 13
without penetration, and 9 and 11 with penetration). It should be noted that
the 450-1b payload, in contrast to the lighter payload, permits the use of the
efficient balsa-like material without causing excessive decelerations in the
absence of penetration. When penetration is absent, results are presented for
the lowest oo considered, namely, 800 psi. According to preliminary calcula-
tions, this o, value gives minimum weight results for the balsa-like material
(cored when o, is less than 1200 psi), as opposed to npmax = 2000 for the

honeycomb-1like material. The stress of 800 psi determines SEA as 24,000
ft-1b/1b and pepge 2as 3.84 1b/ft3. Figures 14(a), 14(b), 14(c), and 14(d)
then show that an increasing Rp (decreasing ppge) causes W.4, R, and

n to increase but causes to decrease (decreasing the 1likeli-
Pnax qpmax/qs ( g

hood of penetration, as expected for increasing Rp). Note that the
a4p aX/qS of 0.730 at Rp = 1.6 ft is the only case where penetration is
m

impossible because /qg 1is less than one. A comparison of the simpli-

Prax

fied and detailed models indicates that the former has the lower W.,, the

lower R, and the higher np . The a4p /qg curves have a shallow cross-
max max

over (in the absence of payload penetration), and q

for the detailed model at Ry = 1.6 ft. Pmax

This absence of quax/qS for the detailed model when it exists for the

/qg does not exist

simplified model has been a recurring theme without penetration, as seen in
table 1, and indicates that the detailed model is the least susceptible to
penetration. The reason for this is the relatively low maximum g loadings,

Np o ax? for the detailed model in figure 14(c).

Effect of Payload Penetration

The data for payload penetration in figures 13 and 14 are limited by the
fact that penetration often does not occur even when the payload is unbonded
(see the dp ax/qS column in table 1 for case 2 with the detailed model and

m

for cases 4, 6, 7, and 13 with both models). It is seen in figure 13 for

honeycomb-1like material, that penetration reduces Weos increases SEA and ogq,

decreases R, increases pcpge, and decreases ap__ /dg for the simplified
max

model at Ry = 0.6 ft. The impossibility of penetration for the plotted
abscissas higher than = 0.6 ft means that the W., curve for the higher

R, values could have been combined with the penetration point at Rp = 0.6 ft
to form a Wgy curve for an unbonded payload, with an obviously beneficial
effect.

The W., benefit due to penetration at Rp = 0.6 ft results from the
increase in SEA and o5 and the corresponding decrease in R. These
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quantities can change because the honeycomb-like material is allowed to change
within its class to maintain np ax " 2000 for penetration (which gives the
m

lowest Wgeg, according to preliminary calculations, as it did without
penetration).

In figures 14(a) and 14(d) for balsa-like material, it is apparent that

payload penetration increases W., and decreases qpmax/qs for both models

at Ry = 1.0 ft and Ry = 1.2 ft when SEA, oy, and p.pge are held constant at
24,008 ft-1b/1b, 1,200 psi, and 5.76 1b/ft3, respectively (where oo = 1,200
psi defines the elbow of the SEA curve in fig. 5 and gives the minimum W¢q,
according to preliminary calculations). The overall radius R is shown in
figure 14(b) to be increased by penetration at Ry = 1.0 ft and decreased at

R, = 1.2 ft; the apparent contradiction between the R and W., effects of
penetration is resolved by recalling that the lowest Wco without penetration
was for a lower opcpge, namely 3.84 1b/ft3, than for penetration. In figure
14 (c) the effect of penetration on npmax is seen to be the same for the two

models at Rp = 1.0 ft but different at Rp = 1.2 ft.
The W, effect of penetration indicates that a perfect payload bonding
would be desirable for the cored balsa-like material at R, = 1.0 ft and

Rp = 1.2 ft. In the event that such a bonding is not feasible or trustworthy,
however, the case of an unbonded payload must be considered. Hence undefined,
wavy-line transitions between penetration and no penetration are shown in
figures 14(a), 14(b), and 14(c), but not in figure 14(d) (due to lack of
space). The most important of these transitions is for Wgo in figure 14(a).
If the W¢o transition were specified in the area of the wavy line, it would
define a curve for an unbonded payload since the wavy line skips over

Rp = 1.4 ft, where bonding is required to prevent penetration at

oo = 800 psi.

Stresses between 800 and 1200 psi (the minimum weight value for
penetration) will presumably be useful in the transition. Thus a variety of
specified transitions will be possible. For an unbonded payload, it would be
desirable to seek a minimum W,y in the transition region for a single og
at which penetration is ready to begin at the end of the stroke; but this is
beyond the scope of the present report. The reasonable assumption, however,
is that such a minimum W., exists and indicates an important design trade-
off for cored balsa, a point where a further increase in payload packaging
density (the abscissa of fig. 14(a)) is undesirable.

The most important effects of payload penetration discussed so far have
been a decrease of W., for the honeycomb-like material and an increase of
Weo for the balsa-like material. Both comparisons have been based on mate-
rial variations for minimum weight within the categories. If these varia-
tions are not allowed, penetration can always be expected to increase W ,.

Except for the roughly 7-percent decrease in W., for the honeycomb-
like material at Ry = 0.6 ft, there has been no advantage of penetration
reported up to this point. If, however, a design is permitted to change
from the honeycomb-like category to the balsa-like category, then a major
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penetration advantage occurs in the present examples for the 100-1b payload.
Specifically, a comparison of case 1 (Rp = 0.6 ft with npmax = 2000,

honeycomb-1like, no penetration) and case 3 (Rp = 0.6 ft, o, = 1200 psi,
balsa-like, penetration) from table 1 shows a weight saving due to penetra-
tion by a factor greater than 3 in W., and greater than 2 in Wy + Wpo-
In addition, a comparison of case 4 (Rp = 0.7 ft with npmax = 2000,

honeycomb-1like, no penetration) and case 5 (Rp = 0.7 ft, o5 = 902.4 psi at
npmax limit of 2000, balsa-like, penetration) shows a weight saving due to

penetration by a factor greater than 4 in W¢o and almost 3 in Weo + Wpo.
Presumably, a still more impressive comparison would have occurred at

Rp = 0.8 ft except that a penetration design could not be achieved for
npmax £ 2000. :

The honeycomb-1like material is used in the comparisons when penetration
is absent.  The reason is that the balsa-1like material, having the higher
SEA over the same stress range (fig. 5), is considerably lighter than the
honeycomb-1like material. In fact, with the force determined by the stress
range, the balsa-like material provides so little mass that the g loading
exceeds the limit of 2000 for the 100-1b payload; and the heavier honeycomb-
like material is required in the absence of payload penetration. (Note that
this is not true for the 450-1b payload.)

When penetration is permitted, however, for the balsa design by removal
of the hypothetical perfect bonding between the top of the payload and the
crushable material, then the only stresses acting on the payload are the
crushing stresses at the bottom of the payload. This reduces the force suf-
ficiently that the payload maximum g 1loading can be held to 2000 even for
the balsa-like material with the 100-1b payload. The high SEA of the balsa-
like material then produces the large weight saving due to penetration.

Note that this weight saving applies for the selected classes of
material; it would obviously be decreased if the honeycomb-like material were

replaced by an intermediate class just heavy enough to bring ny, « down to
ma

2000 without penetration. The possible availability of such a class is
indicated by the less efficient balsa reported in references 4 and 5. These
balsas may be made still less efficient, in the sense of being heavier, by
glue joints or by the addition of weights (a required weight being the cover
for the crushable material).

Thus the large weight saving due to penetration is clearly restricted
to the presently selected materials. It is obviously, however, a phenomenon
worth considering. The fact that a heavy honeycomb material is still being
considered in recent design studies is indicated in references 5, 8, and 9;
and the g loading issue raised herein is emphasized in reference 5.

Comparison With Previous Analytical Models

The foregoing results apply to the specific analytical models
considered here; and a question arises as to their validity. They can be
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considered valid in one sense if they constitute a logical analytical
extension of a reasonably standard body of theory having at least a limited
experimental verification. The extended analytical models can then be compared
with future experiments to establish experience factors as well as means of
improving the models.

The logical extension of standard theory is considered first, with the
limited experimental verification to follow. As pointed out in the Introduc-
tion, the present analytical models extend a significant amount of prior work
(e.g., refs. 1 through 9) to include the effect of payload penetration. The
summary of assumptions and limitations given under "Outline of Theory" is the
same as the assumptions in references 1 through 9, where stated, except for a
few variations on the assumption of equation (2).3

With the fundamental assumptions the same, it is no surprise that the
basic equation of motion (with the anisotropy relation removed) is the same
for the present simplified model without penetration as for comparable models
(mass assumed constant, infinitely thin disk of crushed material, gravity
neglected) in references 1 through 9, where stated. For the present detailed
model, the most nearly comparable and completely described prior model is
given in reference 2. The two models are identical except that the model of
reference 2 has a uniform and isotropic crushing stress instead of the par-
ticular radial distribution of equation (2). In appendix E, it is shown that
such a crushing stress converts the fundamental equation (Al9) into equation
(E7), which agrees exactly with the fundamental equation (1-4) in appendix A
of reference 2.

The analytical extension to include payload penetration is logical for
the detailed model in the sense that no fundamental assumptions are added to
the list given under "Outline of Theory." For the simplified model, the
assumption is added that the force resisting penetration is constant, but it
has already been pointed out that this is true for the detailed model to one
part in a thousand or less, for the examples considered herein.

Comparison With Previous Experiment

The applicable experimental information known to the author is limited
to two configurations, one tested at an impact velocity of 374 ft/sec (ref.
10) and the other at roughly 220 ft/sec (footnote 1). The latter velocity
actually represents an average of velocities ranging from 215 to 225 ft/sec
for four nearly identical tests. At the higher impact velocity, only a
single test is considered because the exterior cover for the model in that
test was the only one (out of four) sufficiently strong and resilient to
prevent model disintegration.

3These variations in anisotropy can be important for various crushable
materials, as pointed out in reference 5. It may be desirable to consider the
standard theory as incorporating the variations of reference 5, with the
assumption of equation (2) considered as an example for evaluating the effect
of penetration. If, however, it 'is desired to have only one anisotropy rela-
tion for a standard theory, then the assumption of equation (2) is desirable
since it is simple and widely used.
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The tests just described demonstrated the existence of payload
penetration, depending on the efficiency of the payload bonding. They also
indicated that both the detailed and simplified models provide reasonable
(within 10 to 30 percent) estimates of measured impact deceleration and
stroke. There are not enough data to determine which model is quantitatively
better.

Alternate Models

The analytical models considered here are manifestly only two out of
many possibilities. Even with attention restricted to the present computer
programs, it would be possible to investigate separately the effects of the
limitations calling for p = 0 and ek = 1, rather than both together (the
assumptions of g = 0 and Fpo(e) = 1 being trival). It would also be possi-
ble to set pck = 0 in the present programs for integration of the equation of
motion but not for evaluation of the acceleration. The programs could be mod-
ified to incorporate various levels of bonding (rather than just zero or per-
fect bonding), various levels of shear resistance, and rational methods of
incorporating the weight and strength of the glue joints and exterior cover.
(Note that any SEA changes due to glue joints or freezing of the crushable
material could be incorporated by changing fig. 5 and the corresponding
equations defining the material.)

Two alternate models have been briefly investigated; a full investigation
would require changes in the machine programs or the design charts. In one,
called the "hemisphere" model, the payload and the entire upper hemisphere are
able to penetrate as a unit, regardless of bonding, because of low resistance
to cross-grain crushing in the equatorial plane. In the other, called the
"shear-plug" model, the payload and the cylinder (with rounded ends) directly
above it are able to penetrate as a unit, again regardless of bonding, because
of low shear resistance over the cylinder walls.

The investigation of the hemisphere model indicates that the payload and
upper hemisphere would have started to penetrate below the maximum g load-
ings for almost all cases in table 1, and would have done so more readily than
the isolated payload for the detailed and simplified models, provided that the
cross-grain crushing strength is 8 percent of the end grain value. Hemisphere
penetration is calculated even at 18 percent (ref. 3 for balsa) for several
cases. At 8 and 14 percent, however, it is also calculated for the high-speed
(374 ft/sec) experimental configuration at a g loading of 3000 to 4000 (ref.
10); yet there was no evidence of hemisphere penetration (i.e., of exterior
cover wrinkling at the equator). Thus, 18 percent may be the most nearly cor-
rect figure, particularly when the glue joints are considered. In any event,
the hemisphere model is of interest.

For the shear-plug model, on the other hand, there is no possibility of
shear-plug penetration at the g loadings under consideration according to
calculations based on a measured shear strength. This model would be of
interest only for much higher g loadings (say, greater than 3000) and/or
much lower shear strengths (less than 145 psi).
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Finally, a question remains as to the effect of payload radius Rp when
densities (including payload packaging density) and stresses remain the same,
that is, a question as to the effect of scaling. Except for the trivial grav-
ity force, the.equations of motion indicate (for a nondimensionalization dif-
ferent from that of appendix A) that geometric scaling should apply, with Ug
and SEA unaffected, with Np ax =~ 1/Ry, R ~ Rp, and Weo ~ Rps. These scaling

conditions, then, can be used to extend the present results. They can also be
used to check numerical results whenever two cases scale each other. In the

present examples, only cases 3 and 9 should roughly scale each other, as
indeed they do.

CONCLUDING REMARKS

The governing equations for the landing impact of a rigid payload
protected by a crushable casing, including the possibility of penetration by
the payload into the casing, have been developed for a general vertically
symmetrical landing. The general equations have been specialized for zero
shear resistance, a constant compacting strain, and uniform density of the
crushable casing. They have also been specialized for a spherical payload and
casing, with the latter having its highest crushing stress in the radial direc-
tion. For the spherical configuration, two approximate analytical models have
been defined: (1) a detailed model with no additional assumptions but requir-
ing an automatic computer program; and (2) a simplified model utilizing either
the computer program or design charts but requiring the assumptions of infi-
nitely thin sheets of crushed material, constant mass in the equations of
motion, zero acceleration due to gravity, and a constant resistance to
payload penetration. When specialized to prevent penetration, the simplified
model (or slight variations thereof) has been widely employed in previous
work; and the specialization of the detailed model for a uniform and isotropic
crushing stress without penetration has been shown to have the same basic equa-
tion as an earlier model. Results for the two models are in reasonable agree-
ment with two previous measurements, having impact velocities of 220 and
374 ft/sec.

Thirteen examples have been presented for each of the two analytical
models. The examples are for an impact velocity of 300 ft/sec, a maximum
permissible g 1loading of 2000, payload weights of 100 and 450 1b, payload
radii ranging from 0.6 to 1.6 ft, payload packaging densities ranging from
26.23 to 110.5 1b/ft3, a choice of zero or '"perfect" bonding between the pay-
load and the crushable material, and a choice of a selected balsa-like or
honeycomb-1like class of crushable material. Overall radii resulting from the
designs range from 1.81 ft to about 3.45 ft, and the resulting crushable
material weights vary from a little over 124 1b to almost 763 1b. The fol-
lowing conclusions are drawn from the examples:

1. The simplified model has the lower crushable material weight of the

two models, the greatest difference being approximately 15 percent
for an example without payload penetration.
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The greatest difference between the two models is a 29 percent
discrepancy in the maximum crushing stress determined by a design
example without penetration for the honeycomb-like class of material.

In the absence of payload penetration, the crushable material weight
and the overall radius increase with increasing payload radius, that
is, with decreasing payload packaging density.

For the honeycomb-like class of material and the 100-1b payload (with
the maximum g loading held at 2000 to minimize weight) payload
penetration does not exist for the detailed model. For the simpli-
fied model, however, penetration slightly reduces both the crushable
material weight and the overall radius at the lowest payload radius,
0.6 ft, the only radius among those tried for which penetration
exists with honeycomb. This advantage of penetration means that
bonding should be avoided with the present honeycomb-like material,
for which the specific energy absorption increases with crushing
stress (a variation more common even for balsa than that for the
present balsa-like class).

For the balsa-1like class of material (with a payload weight of

450 1b), penetration drastically increases the crushable material
weight at the lowest payload radius (1.0 ft) and slightly increases

it at the next lowest radius (1.2 ft). This combines with nonpenetra-
tion results to give a minimum-weight radius for an unbonded payload
between 1.2 and 1.6 ft and a corresponding minimum-weight payload
packaging density between 26.33 and 62.15 1b/ft3.

An impressive benefit of payload penetration is a decrease in
crushable material weight by a factor greater than 4, which occurs
for the 100-1b payload with a radius of 0.7 ft when the (selected)
honeycomb-1ike class of material is required without penetration (by
the g 1loading ceiling of 2000), but when the more efficient balsa-
like class is feasible with penetration.

Ames Research Center
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APPENDIX A
DEVELOPMENT OF BASIC EQUATIONS
GENERAL GOVERNING EQUATIONS

Figure 2 shows a fairly general landing geometry at the start of impact
and at two later instants of time during impact. The only shape requirement
is symmetry about two mutually perpendicular vertical planes, and this
requirement is made for compatibility with the assumption of pure vertical
translation. The crushing strength and density of the crushable material are
also required to be symmetrical but otherwise generally variable. The land-
ing surface is assumed to be perfectly flat and rigid. The payload is
assumed to be perfectly rigid and is considered unbonded to the crushable
material in determining the start of relative motion (if any), herein
referred to as '"payload penetration."

The analysis begins with the phase of impact shown in figure 2(b). 1In
this phase, the crushable material has begun to crush against the landing
surface, but payload penetration has not begun. Hence,

9 = 4 (A1)

where qp and q are the absolute displacements of the payload and the
uncrushed crushable material, respectively, as shown in figure 2(b). The
equation of motion for the constant payload mass MHo is written as:

Mol = Mpob _/ f %vpo dA (A2)

Apo

where a is the second time derivative of q, g the local acceleration due
to gravity, Svpo the vertical component of normal stress on MHo s and Apo
the area over which the stress acts.!

The equation of motion is now written for the variable mass mggy - My
of uncrushed crushable material in figure 2(b) under the assumption that each
particle in mgy - me; is moving at the same vertical velocity q at a
given instant. The equation is

INote that the vertical component of shear stress on the payload could
have been added to oypo in equation (A2) and in the later equations con-
taining oypo- There are, however, no oypo terms in the major governing
equations except for the equation that determines the existence of payload
penetration. When penetration is about to start, the most important stresses
are Oypo Vvalues that are almost large enough to crush the material (in its
strongest direction if it has one and has been deployed to utilize the fact).
Shear stresses are negligible by comparison and are often incorporated in the
tests to determine the crushing strength.
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(g, - mey)d = (g - m)g +f f o A - f f 5, dh (A3)
Ao Agy

where o, 1is the vertical component of the "mostly static' and "mostly
normal' stress capable of deforming the crushable material plastically over
the area Ag;. The term "mostly static" implies the assumptions that the
damping force is incorporated and that the coupling between vertical and
horizontal velocity, or dynamic buckling effect, is also incorporated. The
term "mostly normal' implies the incorporation of a small shear stress. (See
the discussion of figs. 1(b) and 1(c) under '"Properties of Typical Crushable
Material.'") The area Ac¢; 1is the intersection between mg, - mc; and the
mass of crushed material mge; in figure 2(b). The crushed material is
assumed to have been compacted sufficiently to deliver the required crushing
stress oy; and successive layers of material are transferred from mgo - mej
to me; at the boundary Aq; as they undergo plastic deformation. (Such a
process is observed experimentally in the crushing of plastic foam, balsa
parallel to its grain, and honeycomb parallel to its axis.)

The assumption of a uniform (though time variable) vertical velocity d
throughout mgg - m¢; has two implications besides the crushing by layers |
just described. First, the elastic stress waves that establish a uniform gq
must obviously travel at speeds far greater than q (i.e., q must be a low
subsonic value). Second, the deformation waves associated with the elastic
stress waves must be small enough not to affect the magnitude of q.

Equations of motion could also be written for mg; in figure 2 and for
the elemental layer of mass being transferred to mc;. These equations
would determine dynamic stresses in the sense of variable mass, however, and
are not needed since oy is assumed to be a measured quantity.

Equations (A2) and (A3) can be used to determine whether payload
penetration occurs and, if so, at what displacement. If both equations are
solved for ¢q - g and the results equated and rearranged, the result is:

f o dA = "po o dA (A4)
Vpo m_ o+ m -m v

A po co cl

po ) Act

where mp, + mep - mep is the total time-dependent mass at velocity q in

the absence of payload penetration. Equation (A4) is the only major governing
equation containing Oypo; the neglect or incorporation of shear stresses is
justified in footnote 1 of this appendix.

If equation (A4) is considered formally solved for oypo, payload
penetration cannot begin until those stresses become large enough to cause
plastic failure, that is, become a oy distribution. This will occur only
if the geometry, masses, and impact conditions are such that the displacement
q becomes large enough to bring A.; up to the necessary size. It can be
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seen in equation (A4) that the following quantities tend to prevent or post-
pone payload penetration: a large payload bearing area Apo, a small payload
mass mMpo, a large total mass Mpy + Mo - M, and a small bearing area of
compacted material A.;.

Equations (A2) and (A3) can be added to give the major governing
equation:

(mpO tm - mcl)ﬁ = (mpo +m. - m )g ff dA (A5)

This is the simplest equation of motion to apply during the impact period
prior to payload penetration. It does not contain oypo (see footnote 1 of
this appendix).

If equation (A4) shows that payload penetration has begun, the geometry

of figure 2(c) applies. The constant payload mass m,o is then positioned
by the coordinate dp SO that equation (A2) becomes:

mpoqp = mpog - f fcvpo dA (A6)
Apo

The mass mp; in figure 2(c) consists of compacted crushable material.
The velocity dp of Mpo is assumed to apply uniformly throughout mp1 -

Hence, the equation of motion for mp; can be written:
m g =m + o dA - o 1 dA
p1%p = "p18 ff vpo .[.[V (A7)
A A
po pl

where Ap1 is the intersection between my; and the variable mass

Meo - Mgy - Mp; of uncrushed crushable material, and oyl differs from the
""mostly static'" crushing vertical component o, acting over Apl only
because the elemental layer of mass dmpl is transferred to Mp1 .

The equation of motion for dmp; becomes, with the definitions just

[ [ foe

or

(d_p - f{)lhpl =/ /Ovl dA -f /cv dA (A8)

pl Ap1

A
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where m 1 £ dm 1/dt where the higher- order quantity gdmy; has been
neglected, and where qp and q represent the final and initial velocities
of dm

Pl

Equations (A6), (A7), and (A8) can be added to give

(g + mpl)iip + (dp - Q)i = (o * Mpy)e —/ /cv dA (A9)
Ap1

A second major equation of motion defines the forces on the variable mass
Mo - Mg - Mp; of uncrushed crushable material in figure 2(c). Under the
assumption that each particle in Meo = Mel = Mpy is moving at the same
vertical velocity q, this equation is

(mCO -m - mpl)d = (mco -m, - mpl)g +/ /Uv dA —/ /ov dA

A'Pl ACl

(A10)

where Ap; 1is defined as in equations (A7) and (A8) and A.; 1is defined
analogously to that in equation (A3).

Equations (A9) and (Al0) define the motion during payload penetration
since all quantities can be defined in terms of q and q, and their deriva-
tives. The two major governing equations are coupled in the most general
case by the qp - q term, the dependence of mp; on ap - q, and the
dependence of "mp; and of o, over Ap; on qp --q. Equations (A9) and
(A10) do not contain Ovpo -

GOVERNING EQUATIONS FOR ZERO SHEAR DEFORMATION,
UNIFORM COMPACTING STRAIN, AND UNIFORM
MATERTAL DENSITY

Although figure 2 does not show any shear deformation, the equations
derived so far would apply even if such deformation were present. The speci-
fication of oy, however, requires knowledge of the location of the surfaces
Acy and Apy, and shear deformation is ruled out at this point to retain the
simple surfaces implied by figure 2. Then Ac; and Ap; are determined by the
height variables h¢; and hpl: where h.; is the local height of mg; in

figures 2(b) and 2(c) and where hp; 1is the local height of mpy; in fig-
ure 2(c). If shear deformation had been considered, there would be a trail-
ing of material to make My wider than Mpo and a possible lifting off
the ground of the edges of m.;.
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The actual lengths of hy; and h.; are evaluated in terms of a readily
measurable variable e. This variable is defined as the compressive compact-
ing strain of the crushable material ('compacting strain" is the strain at
which the crushing stress rises abruptly from a relatively constant value for
a test specimen of uniform cross section). The effect of the direction of
maximum strength is ignored under the assumption that the material will com-
press to the same compacted strain along any axis.

The use of € is made feasible by the assumption that the energy
absorbing process consists of the vertical crushing of separate vertical rods
of material. Then h. in figures 2(b) and 2(c) is the total shortening
deformation of a rod having an initial length of h¢ + h¢p, and dp - 9 is
the corresponding deformation of a rod having an initial length of
gp - q * hpy, where hp; 1is the local height of mp; 1in figure 2(c).

Since the variable e df is (by the definition of strain) the total shorten-
ing deformation of each successive rod element d& to be crushed, it is seen
that N

qp-q+hp1
9p - q = e dg

o
T

(A11)

Under the assumption of uniform compacting strain (e = e€x = constant),
the equations just derived can easily be solved for hp; and he;

1 - €k N
hpl =——€—k—'— (Clp -q)

g (A12)
1l - €1

h,, =- o he

The effects of equations (Al12) for the constant ey can be seen in figure 3,
which is otherwise identical to figure 2. In figures 3(b) and 3(c), the mass
me; has become a foreshortened image of the volume V¢, which would lie
beneath the landing surface if there had been no crushing; and the height

hp; of the mass My1 has become constant in figure 3(c).

The next limitation to be imposed in the analysis is that of uniform
density of the crushable material prior to crushing. Then mp; and m¢; in
equations (A4), (AS), (A9), and (Al10) become:
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mpl - pck(vpl ¥ Vp)

pck(vcl V)

m
cl Cc

where Vp; is the volume of myp, Vp the volume swept out by mpo during

payload penetration, and V¢; the volume of mc;. When V,; is related to

Vp and V¢; to Vo according to equations (Al2), the masses mp; and mey
become

~
1 -¢ o .V
m 1 = ock<V X +Vp>=————RCk
p P g €x
? (A13)
1 -¢ p .V
My = pck(%c € : * Vc) - CE :
k k J

The relations between the volumes Vp and V. and the displacements q
p c p
and qp can be determined by the following volume formulas:

\
Vo= A .
b poh(qp q)
) (A14)
q
VC - f Ash dhc
0 J

where A, 1s the horizontal planar projection of Apo and Ap), and Agp is
a horizontal cross section in V.

Another useful set of relations involves the stresses. The stress
integrals in the major governing equations (A4), (A5), (A9), and (Al0) can be

written ‘W
/ fcvpo dA =/ /Opo dA
A A
po poh
/ o, dA =f /O’ dA > (A15)
Al A
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where opo is the normal stress on the payload prior to penetration, ¢ is
the normal crushing stress on any surface, and A.;p 1is the horizontal
planar projection of Ac;. For integration of the right-hand sides of equa-
tions (Al5), the normal stresses must be evaluated at the intersections
between the curved surfaces (Apos Ac1, Ap1) and vertical lines through the
centroids of the elements dA " in the horizontal planar surfaces (Apohs Acih,
Apoh) .

poh

A final useful relation is the following change of variable:

Uz(iz-g—% (A16)
With equation (Al6)
:gg.-:—dg-z gl]_=ld(U2)
1=k Fax - q 2 dq (A17)

Equations (Al3) for uniform density and uniform compacting strain,
together with the volume equations (Al4) and the stress equations (Al5), are
now introduced into the basic governing equations. In addition, one of the
governing equations is reduced to first order by equation (Al7). Thus equa-
tion (A4), which determines the start of payload penetration (if any),

becomes:
m 0.)f J(.o dA
P Aclh
/ / cpo dA = (A18)
A

q
poh Mo * Moo = (Por/E) f Ash 9B
0

Equation (A5), which defines the impact prior to penetration, becomes:

J/. “/PO'dA
Aclh

=g - (A19)
q
Mo ¥ Moo ~ (pck/ak)J/ﬂ Asn dhe
0

Finally, equations (A9) and (A10) for payload penetration become:
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(pckApoh/ek) (dp - ©* +.[ ./O dA w

poh

ap =g -
mpo + (kaApOh/Ek) (qp - q)
(A20)
./” ‘J{; dA —~,~ “/; dA 5
§=g- Ac1h APOh

q
Mo ™ (pck/ek)f Ash dhc - (pckApoh/ek) (qp - a)
0

J

Equations CA18) through (A20) define the problem for the landing geometry of
figure 3, providing the stress and volume integrals can be evaluated.

EVALUATION OF VOLUME AND STRESS INTEGRALS
FOR SPHERICAL GEOMETRY

The evaluation of the volume and stress integrals is facilitated by
restriction of the landing configuration to a simple shape. The sphere is
particularly useful for landing packages and crushable coverings that must
absorb energy from impacts in any direction. Hence, the geometry is now
specialized to concentric spheres.

The spherical landing package is shown in figure 4(a) at the start of
impact, in figure 4(b) during impact but prior to payload penetration, and in
figure 4(c) after penetration. All angles and radial lengths are shown in a
plane of maximum value.

The volume integral in equations (A18) through (A20) can be evaluated
immediately on the basis of sketch (a), which is a simplification ‘of figure
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4(a) or 4(b). Thus
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T Q2GR - q) (A21)

It is also noted, for certain volume terms and integration areas in equa-
tions (Al18) and (A20), that

Apoh = mRp? (A22)
as can be seen from figure 4 and the definition of Apoh.

One of the stress integrals can be evaluated immediately under the

temporary assumption that opo = opok = constant. Then, with equation
(A22),

= = 2
.{ f Opo dA GpokApoh pr Opok (A23)
poh

The assumption that Opo = Opok may be valid only when opok approaches
the normal crushing stress o, that is, when payload penetration is
approached. Fortunately, this is the only region of interest for
equations (Al8) and (A23).

Prior to evaluation of the stress integrals for o, another limitation
is applied to the analysis, namely,

0 =0gcosa; ac<90° (A24)
where o 1is the angle between the local normal to the stressed area and a
radial line from the center of the spherical system (as if undeformed) through
the point of stress application. (The rationale for this limitation is given
immediately prior to eq. (2).)
The next step is to determine o for mg; in figure 4(b) (with
applicability after payload penetration as well). Any point on the surface

of revolution shown by the dotted portion of the circle is defined, with the
aid of sketch (a), by

> + (R - q + he)? = R?

From the second of equations (Al2)
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€x 2
r2 + R—q+1_€khc1) = R? (A25)
Hence, in the vertical great-circle plane, the surface slope of m¢; 1is

dhCl (1 - ek)r (1 - ek)r

& ek{R - q+ [(ek/(l - ‘.':k)]hCII . Ekm

Thus, with ¢ shown in figure 4(b) and from the greater detail in sketch (b),

Line length = v/r2 +(R-q- h¢,)?
Vertical
R Normal
R-q -arc tan ?c'
T O = 0gcCosQ
\ hCI .
TR f<// XTI TP Landing surface
9 —~— a—
Sketch (b)
dhCl (1 - ek)r

o = ¢ - arc tan e ¢ + arc tan (A26)

EkVRZ - r2

With equation (A26) introduced into equation (A24), the normal stress on
the surface A.; (at height h¢; in fig. 4(b)) becomes:

& (1-c¢
o = Oo cos|¢ + arc tan

KT

yR2 - 12

€
k
Thus,
5 (1 - Ek)r 1 - Ek)r
— = €0S ¢ €cOS arc tan ——e————— - sin ¢ sin arc tan
% €k¢R2 - r? € RZ - r2

but, in figure 4(b) and sketch (b),

R~-q - hcl 7
cos ¢ = /*2 >
r°+ R-q-h.) }
sin ¢ = z
/2 + (R - q - hcl)2
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and hg; can be determined from equation (A25). Then, after some
manipulation, together with

VR2- (R-q)?2
/ fodA=/ o2nr dr
Aclh 0

we obtain

/R2- (R-q)?

21[(R - @)VR? - 12 - (1 - € )R?]r dr
/ fc dA = ¢
o 21\ 1/2

Aclh ([(1 - ek)2r2 + ekz(R2 - 21t + (l/ekz) [R -q-Q - ek) RZ- r2] })

0
With the substitution b = /R2 - r2, this becomes

R [(R @b - QA - ek)RZ]b db
f/ch:Znof
o
Aclh R

1/2
q ([[ek2 - - ek)Z]bZ + (1 - sk)ZRZI{RZ - b2 + (1/gk2)[R -q- (1- ek)b]zl>

(A27)

and equation (A27) is the stress integral for the upper surface A;; of
mey;  in figure 4(b) or 4(c). The integral contains no singularities and
hence can readily be evaluated numerically.

The angle o« 1is now determined for mp; in figure 4(c). Thus, with
sketch (c¢) for detail,

o= 0p - 9p
or
0 = arc sin fg
Rp
Ip
2_,2 - arc tan
Ry -r

p p ‘/RPZ - I.p2 + (qp -q) + hpl

Sketch (c¢)
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or, with the first of equations (Al2),

T T
P

o = arc sin = - arc tan’ (A28)
" (/e (ap - @) + TRp? - 12

When equation (A28) is introduced into equation (A24), the normal

crushing stressRc is determined. When o is put into j;\ f o dA with

1%
";\pohfc dA =.£ O'ZTTI‘p drp,

the result is

p

R
P 27 [(qp - q)/ek)n/sz - rp2 + sz]rp dr
f fo dA = 9,
A R,V 20, - @)/ ]/ R 7 [(a, - @)/e]? + B2
poh 0 P

With the substitution bp = /Rp? - rPQ, this becomes

2
[(q q)/e:k]bp + Rp lbp dbp
f.[o dA = / T (A29)
: 2
Apoh q

- ‘q)/ek]bp + [(qp - q)/z-:k]2 + Rp2

Equation (A29) is the stress integral for the lower surface Ap; of mp; in
figure 4(c). It can be integrated directly to give

) y 2 2

o ap - q ap - a ap - 9

/fch: qo—q2 _z(pe )+<pe >RP2+3RP“ P2+<Pe )
15Rp(pE ) k k K

Apoh X
4 3 2 q q
aQ, - q qp - q 9 - 94 a, - q p-
) Y s -2 P )RP+2(p )Rp2+3(p )Rp3—3Rp” (Rp+———€————>
€y €k € £k k

Since equation (A30) is indeterminant at [(qp - q)/e] = 0, that is, at

(A30)

the start of payload penetration, the best way to evaluate j;\ fodA is to
poh

integrate equation (A29) numerically. At [(qp - q)/e] = 0, equation (A29)
becomes
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/ fo dA = anZOO (A31)
Apoh

[(ap-a)/el=0

Comparison of equation (A31) with equations (A23) and (A24) serves as a
partial check on the development of equations (A29) through (A31) since
o = 0° (or o = 0y) on the payload at the start of penetration.

Dimensionless Governing Equations for Spherical Geometry,
With Termination Conditions

Governing equations that have been derived in this appendix are now
made dimensionless in a form convenient for numerical solution of the impact
problem with spherical geometry. Prior to payload penetration, equation
(A19) applies and becomes, with equations (A21) and (A27),

n d(ng) - - g Fe1(z)
z n m(z)

(A32)

where ge 1s the acceleration due to gravity on earth, Npge and npgge are
the actual and maximum design payload decelerations, respectively, and

__ld 2 )
"pBe T 7 2 dq v
_ U
WS ————
/npdgeR
5 (A33)
zz%
TR2G
Kz____o_._
R " m nn g
po mdSe

The dimensionless total mass m(z) in figure 4(b) is defined by

Mpyg + Mg - M m

po co cl co p

m(z) = — 1 + _ -l ( ck>22(3 - z) (A34)
OPR

po mpo 4€k

with

o= (A35)
PR (4/3)m?
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where F¢i(z) is the dimensionless crushing force on m(z) defined by

Foy(2) = ; [[ch-‘-
mR GO

Aclh

[(1 - 2)s -1+ ek]s ds

2 1/2
1-2 <‘[ek2— (1 - ek)2]52-+(1 - ek)z}ll - 8?2+ (g [1-2-(1 - ek)s]zl>
(A36)

with s = b/R. Under the initial condition w(z = 0) = w,, equation (A32)
integrates immediately to

z
1 dw?)

2 it AR S P

W, +2f 78 dj

]
k3
o
o
+
N
[
=]
=]
. o
oQ
[¢’]
1
-~
vl
v
g1 o
~ -
el o~
(7
~—
| W |
(v

(A37)
Equations (A32) and (A36) apply until 2z reaches a value zg, at which

payload penetration (if any) starts. The start of penetration is defined by
equation (Al8) with equations (A23), (A34), and (A36). Thus,

O 2 F . (2)
pok R c1
o <E£> - (A38)

and penetration starts (z = zg) if and when opok Treaches oq (providing the
payload is not attached to the crushable material).

At the start of penetration, it becomes convenient to introduce three
new variables and one constant as follows:
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:g_.z B.__
TRy TR
X = t nmdge
> (A39)
qp—q
e =
QkRp
2
™Ry%0, Rp
Kp S —_— = KR —_
Mpolipg8e R ‘J

The initial conditions for penetration are

y(x = 0) =yg = zg4 %—-
P
<§l = <_(:.l_y_> =W _R__.
dx - dx s S Rp
> (A40)

e(x =0) = eg = 0

de}) =(de)

CICTI

where wg 1is the value of w determined by equation (A37) at =z = zg.

During penetration, equations (A20) apply, with equations (A21), (A22),
(A29), (A36), and (A39). Thus

N e %  d% _ g (R0 ckek/mpo) (de/dx)? + KpFpo(e) )
Ond dx2  dx?  Mmafe mpen(e)
(A41)
a2y g KpFey () - KpFpg(e)
dx? "md8e mep.(y,€) )
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where Fg1(y) is determined by equation (A36) with (Rp/R)y substituted for
z; mpen(e) is the dimensionless total penetrating mass in figure 4(c) defined

by
m + M p
po © "pl 3" ck
m (e) =S - =1 + = -——> (A42)
pen Mpo 4Q°p
with
m
oy = po (A43)
(4/3) 1Ry’

mer(y,e) is the dimensionless crushable mass in figure 4(c) defined by

Mey - Maq - M ‘m p P
n e = co c1 pl "Tco 1 ck y2[3 R _ _3(Iek) e (a44)
cr’ mpo Mo dey pp Rp 4 Pp

and Fpo(e) is the dimensionless crushing force on mpen(yp,y) defined by

1
(es, + 1)s,, ds
F o (e) = — o dA = 2 P P P (A45)
0 7
P v WRP o

0 Apoh ‘/Z;Sp + e2 + 1

with Sp = bp/Rp.

Equations (A32), (A37), (A40), and (A41l) are the required governing
equations and initial conditions. With rebound excluded and with no payload
penetration, the impact is terminated (z = zpax) when w = 0. Thus

W(Zmax) = 0 - (A46)

With rebound excluded but payload penetration present, the impact is termi-
nated (y = ypax and y + eke = (y + eke)p,x) when dy/dx = 0 and

dy/dx + ek(de/dx) = 0. Since e increases monotonically with time for the
present examples, the termination condition becomes

dy -
Y=Ymax

de _
€=Cnax

As the payload begins to penetrate the crushable material, equations
(A41) are integrated simultaneously. This continues until the first of

B (A47)
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equations (A47) is satisfied, thereby providing initial conditions for the next
phase of the problem. In this next phase, the second of equations (A41) can
be ignored and the first equation solved alone. The uncoupled solution of

the first of equations (A41) continues until the second of equations (A47) is
satisfied.

Simplifications for Constant Mass, Infinitely Thin Crushed Material,
and/or Constant Penetration Resistance

The governing equations are now written with constant mass (pck = 0).
Equations (A32) and (A34) are combined to give

F z)
dw?) _ g K c1 ¢ (A48)
dz Mhde 1+ (mco/mpo)
where F¢1(z) is given by equation (A36). Equation (A37) becomes

A T N o B @)
St 2f R A2 e T R T gy |
0

o1
_nmd_Z

()
I

0

z
287 R d (A49)
2 . .
= WO + - Fcl (J) J
"nd8e 1+ (mco/mpo)
0
and equation (A38) gives
9pok _ B__Z Fey(2) (A50)
o Rp 1+ (mco/mpo)
After payload penetration starts, equatiéns (A41) apply, and pck = 0 gives
W
p d2e  d?y g F (e)
- —_—= -+ = - e
"nd Kax?  ax®  TndSe % po B
(A51)
d2y _ g KRpcl (Y) - Kpro(e)
dx? ™md8e mco/mpo J

where Fgy(y) is given by equation (A36) with y(Rp/R) substituted for z and
where Fpo(e) is given by equation (A45).

Regardless of whether pck = 0 or pcx # 0, equation (A36) is greatly
simplified by the specialization to ek = 1 (infinitely thin crushed material).
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Thus, for ex = 1, equation (A36) can be integrated; and z = y(Rp/R) can be
substituted as follows:

Fop(2) = 22(1 - 2)

Rp R Rp\?
Foi(n) = 2<§— y\l1 -y EB' =2x)Y %5-— >

Regardless of whether pck = 0 or # 0 and whether e =1 or # 1, equation
(A45) is greatly simplified by the assumption that the payload stress and
force maintain their initial penetration values throughout the penetration
stroke, that is, the assumption that Fpo(e) can be represented by Fpo(O),
which is unity. Thus, the assumption has the form

(A52)

Fpo(e) = Fpo(0) = 1 (A53)

Equations (A52) and (A53) can be used individually or together in the govern-
ing equations for pck # 0 or for pck = 0 whenever the simplifying
assumptions are appropriate.

If the assumption of equation (A53) is made (constant penetration
resistance) and if pck = 0 (constant mass), equations (A41) can be decoupled
by a change of variable, regardless of whether ey =1 or # 1, as can equa-
tions (A51), which are specialized for pck = 0. The governing equations
(A48) through (A51) will be rewritten, however, for ek = 1, that is, equa-
tions (A52), as well as the assumption of equation (A53). The change of
variables is

Rp p
gz ddt v &R
A R S dx 7 Ry
Nnd€e P n'mdgeRp
& (A54)
4p
Yp = ﬁE-E e +y=e+y
P — dx ~ dx ~ dx  dx @ dx
nmdgeRp S

With the first and second of equations (A54) and the first of equations
(A52), as well as equation (A39), equation (A48) becomes
R/R -
P ~ 1 d(Vz) _ g ) Y[( / p) Y]

2K (A55)
g 2 dy n g P11+ (mco/mpo)
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Equation (A55) integrates immediately to

Y 2
v2 = v,2 4 2f _% d(v?) dE = vy? + 2gy 2Ky L(R/Rp) - (2/3)y]

d (A56)
. & "nd8e 1+ (mco/mpo)
The same substitution in equation (A50) gives
opok  /p V' 2(Rp/R)Y[1 - (Rp/R)y]
= | — (A57)
Oo Rp 1+ (mCO/mPO)
and equations (A55) and (A56) apply until payload penetration starts at
Upok/go = 1 in equation (A57), which then becomes
R 1 Meo
2 =
Ys = 5= Y. * 5|1+ =0 (A58)
Rp s 2 < mpo)
where y, 1is the dimensionless displacement at the start of penetration.
After penetration begins, equations (A51) apply. They become, with
equations (A52), (A53), and (A54),
2 N
ny 1 d(vp ) g
“n, T2 dy T n - K
md p md€e
? (A59)
ld(vz) _ g ) KP{ZY[(R/RP) =yl - 1}
2 dy "nd8e mco/mpo /

Equations (A59) are uncoupled. The first equation integrates immediately to

vp? = vs? + 2 <nm§ge - Kp) vp - ¥g) (A60)

and the second to

K :
2 2 y.2 ‘g P R 2
V-Vs+21ng+m/m [--ﬁ—(y+ys)+g(y2+yys+y52) (y - vs)
md®e co’ po p
(A61)
where vg is the dimensionless velocity corresponding to Yg-
Equations (A55) through (A61) are the governing equations for infinitely

thin crushed material (ex = 1) and constant mass (pck = 0), with the assump-
tion of constant penetration resistance (Fpo(e) = 1) required after payload
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penetration but not before. In the absence of penetration, equation (A56)
can be used to determine yp,x by setting v = 0. Thus yp,x 1is the solu-
tion of the cubic equation

2
zprmax[(R/Rp) - (2/3)Ymax] i 28¥nax _v.2=0 (A62)
1+ (meo/mpo) "na8e >

The dimensionless velocity vg at which penetration starts (if any) can be
determined by writing equation (A56) as

2gys  2Kpys?[(R/Rp) - (2/3)ys]

2 - 2
Ve = vt + - (A63)
"nd®e L+ (mco/mpo)

where yg 1is the solution of equation (A58). Then the maximum payload
dimensionless displacement vy nax with penetration is determined by equa-
tions (A60) and (A63) with vp = 0 as

o2+ 251 - [rsl®RY - /Y + meo/mpol))

YPrax 2[Kp - (g/npg8e)) (A64)

A similar procedure with equations (A61) and (A63) and with v =0 gives
ymax as the solution of the cubic equation.

ZKP 2 2 2 R
m_/m gn(ymax " Ynaxs T Vs ) - ﬁr_(ymax * ys) +1 (ymax - s)
co’ po p
28Yax 2Kpy P (R/Rp) - (2/3)y ]
Opax = Ys) * 3 g Vo© - 1+ (m_/m_) =0
md®e co’ po

(A65)

It should be noted that ypp.x 1s generally sufficient for design problems
involving payload penetration and that equation (A65) for ypax 1is included
only for completeness and possible checking purposes.
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APPENDIX B

SAMPLE CALCULATION FOR DESIGN BY SIMPLIFIED MODEL

WITHOUT PAYLOAD PENETRATION

Under the assumptions that o =0, ex = 1, and g = 0 (simplified
model), a calculation is performed in this appendix to yield a design of a
crushable casing for the following conditions:

Uy = 300 ft/sec
ed = 0.7
€m = 0.8

Npoax = 2000

Wpo = m.poge = 100 1b
Rp = 0.6 ft

Payload penetration prevented by bonding
if necessary

The calculation corresponds to case 1 in table 1, as indicated by the last
four of the above conditions. The calculation follows:

U 2
- - (500)° = 2.331
(Mp, . 8e)Rp  (2000) (32.17)(0.6)
From figure 8 for egq = 0.7
R.
L _ 0.6 _
- 0.286 or = m— 2.097 ft

From figure 9 for eq = 0.7 with Rp/R = 0.286,

Ino = 2.74
Uo?
check: ——————0"= (2.331)(0.286) = 0.6665
(npmaxge)R .
From figure 6
q
Zmax = —g— = 0.500
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or

Dpax = 0.500(2.097) = 1.049 ft

From figure 7 for eg = 0.7
Jmo = 2.74 (check is perfect to 3 places; therefore use 2.74)

From figure 12 with Rp/R 0.286,

Npg = 55.5

0.8(2.74) = 2.192

emImo

Eefd 32 .17(0.7)

= 2.503x10"% ft-!
2 -
Yo (300)°

JmoWpo (2.74) (100)

- = 0.5053%x10"1 psi/ft
Nmo TR (144) (55.5)7(0.216) (144)

From equation (27) with o, in psi

SEA = 2.192 ft-1b/1b

2.503x107% - (0.5053x1071/0,)

Now decide which material to use in figure 5 (trial eliminates the balsa-like
class, which is too strong for low payload weight). From figure 5 for
honeycomb-like material,

try SEA = 10,400 ft-1b/1b at oy = 1,000 psi
_ 2.192x10%
SEA = st epeg = 10,960 ft-1b/1b
try SEA = 10,870 ft-1b/1b at o, = 1,100 psi
_2.192x10%
SEA = s—gfe="—rr=s = 10,720 ft-1b/1b
try SEA = 10,800 ft-1b/1b at o = 1,090 psi
L
SEA = —2:192X10° 14 950 £to1b/1b

2.503 - 0.463
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try SEA

10,770 ft-1b/1b at o, = 1,080 psi
2.192x10%

SEA = 5=0% 0468

= 10,770 ft-1b/1b
therefore
0o = 1,080 psi

SEA = 10,770 ft-1b/1b

From equation (8), with oy in psi and SEA in ft-1b/1b

em(144 o) (
_ _ (0.8)(144)(1,080) _ 3
pcmge - SEA = 10,770 = 11.55 ].b/ft
From equation (17)
2
coMeo _Im%oTEm (2.74) (300)2(0.8) 0. 8135
Mho + Mg ge(SEA)ed © (32.17)(10,770) (0.7) ~ o
mpo 1
Mg = 57BIEE 1 =1.229 -1 =0.229
m
—=2 = 4.366
Mho
therefore
Weo = 4.366(100) = 436.6 1b
Wpo + Weo = 100 + 436.6 = 536.6 1b
Check by recalculating pepge. From equation (25),
Wco 436.6
P g, = = - = 11.58 1b/ft3

cm®e Nmo“Rps (55.5)(m) (0.216)

(Check is adequate: wuse 11.56 1b/£ft3.) Check to see if bonding is necessary
to prevent payload penetration .

2
Rp mco
T 1+ s = (0.286)2(5.366) = 0.4386

o]

From figure 10
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zg = 0.325

q q
max max _ ‘Pmax _ 0.500 _ ; =20 5 1 000

Zg ds qs  0.325

Therefore bonding is necessary to prevent payload penetration.
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APPENDIX C

SAMPLE CALCULATION FOR DESIGN BY SIMPLIFIED MODEL
WITH PAYLOAD PENETRATION

A sample calculation is given for an approximate design of a crushable
casing under the assumptions that pcx = 0, ex = 1, and g = 0 (simplified
model) together with Fpo(e) = 1 for penetration. The design conditions are
the following:

Up = 300 ft/sec
eq = 0.7
€m = 0.8
<
Np ax = 2000
0o = 1200 psi for balsa-like material
Rp = 1.2 ft

Payload penetration permitted (unbonded)

The last four conditions indicate that case 1l of table 1 is being calculated.
From figure 5 for balsa-like material,

SEA = 24,000 ft-1b/1b

From equation (8), with o, in psi and SEA in ft-1b/1b

. a4 99) g 8y (144) (1,200)
cne SEA 24,000

= 5.76 1b/ft3

From equation (22) with o, in psi (for penetration)

TRp? (144 0,) _ m(1.44) (144) (1,200)

"Pnax T m g 450 = 1,757
po~e
For iteration with figures 11 and 12, calculate
2
1 Yo 1 (300)2 - 0.959
2e4 npmaxgeRp 1.4 (1737)(32.17)(1.2)
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1+ 0.959

1.959

(1 + 0.959)2 = 3,838
SEA 24,000
= 2 = 14.385
npmaXEme 1737(0.8)(1.2)
) Meo
first —— = 1.0 (guess)
po
. 1+1.0
first Nmu m = 0.5213
From figure 11 for €4 = 0.7
first NRU 0.8435
R
. P 0.8435 _
first 'ﬁ'— T.—9'—5'9—‘ = 0.4306
From figure 12
first Npg = 15.5
m
co 15.5
second = T4 385 - 1.078
po
1+ 1,078 _
second Nmu —-m— = 0.5415
From figure 11 for €4 = 0.7
second NRU 0.838
R
P _0.838 _
second R~ T9%9 - 0.4278
From figure 12
second Np - 15.75
m
. co 15.75
third T4 385 = 1.095
po
. 1+ 1.095 _
third Nmu = W = (0.5460

From figure 11 for €4 = 0.7
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Third NRU = 0.8368
. Rp  0.8368 _
Third 'li'—— m’g—— 0.4273

From figure 12

third Np; = 15.75 (same as second)
P 04075, me~LZ 5 a0r g
R~V ’ T 0.4273 ~ “
mC
=2 - 1.095
m
pO
Weo = 450(1.095) = 493 1b
W+ W__ =450 + 493 + 943 1b
po co

Check by recalculating P enBe

From equation (25)

o g = feo 493 = 5.767 1b/ft3
cm®e N 3 (15.75) (m) (1.728) )
mo™Rp

(Check is adequate: wuse 5.76 1b/ft3)

Check that penetration occurs for this mco/mpo and Rp/R

R, \2 m

P co

<§—> 1+ — = (0.4273)2(1 + 1.095) = 0.3825
pO

From figure 10

z_ = 0.257

From equation (5) with L = 0

R
1%
Zpmax Ed( - E—)-—0.7(0.5727) = 0.40089

Z
Pmax . Pmax _ 0.40089
o T T~ g7 = 1.56 > 1.000

Therefore penetration does occur
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APPENDIX D

COMPUTER PROCEDURES FOR THE GOVERNING EQUATIONS

WITH SPHERICAL GEOMETRY

The computer procedures described for spherical geometry in this appendix
form an essential part of the so-called "detailed" analytical model but can
also be specialized for a variety of less detailed models. There are three
computer procedures. .

BASIC COMPUTER PROCEDURE

The first computer procedure described is the "basic" procedure. It
cannot be regarded as a design since it contains no provision for automatic
determination of crushable casing parameters to achieve a desired acceleration
and/or a desired ratio of stroke to available stroke. The primary purpose of
the basic procedure, then, is to check the adequacy of designs which have been
determined by other means (for example, designs determined by the simplified
model employing figs. 5 through 12).

With symbols defined in the section on notation or in parentheses, the
basic procedure contains the following steps:

1. Input and print the following: case number, W ., Rp, Uo, €ds €m»
npds 8e» 81> &p (value of g for equation of motion), g, (value of ¢ for

acceleration ratio), exm (value of ek for equation of motion), €ka (value

of ek for acceleration ratio), eks (value of ek for stress ratio), P ckmfe
(value of pcpge for equation of motion), pckage (value of pcyge for
acceleration ratio), pcksfe (value of pcgxge for stress ratio), Fpom(e)
(value of Fpo(e) for equation of motion), Fpoa(e) (value of Fpo(e) for
acceleration ratio). Also input and print trial values of R and oo.

Finally, input and print whether the payload is considered perfectly bonded
or perfectly unbonded to the crushable material, whether the SEA is computed
from 0o or selected, whether the material is considered to be balsa-like or
- honeycomb-1like (important only if SEA computed), and the value of SEA if
selected. Note that pckpmEes» PckaBes OF Pcks8e often is specified as  pcm8es
to be calculated in step 2. Note also that Fpom(e) and Fpoa(e) is specified

as a constant, usually 1.00, or as the integral of equation (A45).

_ 2. Calculate and print the following constants: ppge (from eq. (A43)
with Mpo = Wpo/ge), SEA (from eq. (9) if calculated for balsa-like or
eq. (10) if calculated for honeycomb-like), ocmge (from eq. (8) with
f i i -

actor for dimensions), Weo (from Weo = (4/3)m(R3 - Rp3)pcmge), Weo + Wpo:
gn/TmdLe> La/Mmdfe> Wo? (from the first of eqs. (A33)), Kr (from the last of
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eqs. (A33) with Myo = po/ge and a factor for dimensions), and P pp&e {(from
eq. (A35) with mpo = Wpo/ge)-

3. Generate and print values of F.ip (from eq. (A36) with exp of
step 1) and w2 (from the equation of motion, eq. (A37), with eq. (A34) and
with exm, gm, and pckm of step 1) for selected values of =z (z = q/R).
Terminate the integrations at the lowest positive value of w2 when 1z is
varying by increments of 0.0001. Print this value of 2z separately and label
it zpmax without penetration. Calculate L/R according to equation (5) with

2P ax = quax/R’ print it separately, and label it L/R without penetration.

4. Generate and print values of F.;g (from eq. (A36) with eks of
step 1) and the stress ratio Gpok/oo (from eq. (A38) with eq. (A34) and with
eks and pcks of step 1) for selected values of z. With 2z varying by incre-
ments of 0.0001, terminate the calculations at z = 1.00 or at the lowest
positive value of 1 - (opok/oo), whichever occurs at a lower =z value. Print
the termination value of =z separately and label it zg. Calculate

z z rint it separatel and label it z z without penetration.
pmax/ ss P p Y pmax/ s P

5. Generate and print values of Fgci14 (from eq. (A36) for ekxg of
step 1) and deceleration ratio np/nmd (from eq. (A32) with eq. (A34) and with
€ka, La, and pcka from step 1) for selected values of z. Terminate the
calculations at ZP nax without penetration.

6. If the payload is bonded or if zpmax/zS £ 1.00 without penetration,

terminate the program at step 5. If the payload is unbonded and if
zpmax/zs > 1.00 without penetration, proceed into the penetration phase. For

penetration, calculate the constant Kp according to the last of equations
(A39) and calculate four initial conditions according to equations (A40).

7. Generate and print values of vy, e, dy/dx, and de/dx for selected
values of x (x = tVnmdge7Rp) by integrating the two simultaneous ordinary
differential equations (A41), with auxiliary equations (A42) through (A45),
with initial conditions described in step 6, with Fgip(y) determined as in
step 3 when (Rp/R)y 1is substituted for =z, with Fpom(e) being the integral
of equation (A45) or a constant according to the specification in step 1, and
with ekp, gm, and pckm being the values of step 1. Terminate the integra-
tion when dy/dx is zero to four or more decimal places and when successive
values agree to four or more signifcant figures for the worst of y, e, and
de/dx. _The corresponding value of y is called Ymax, and the corresponding
values of e and de/dx are initial conditions for the next phase of the
problem.

8. With the initial conditions just described, generate and print values
of e and de/dx for selected values of x by integrating the first of equa-
tions (A41) with d2y/dx? = 0. Terminate the integration when de/dx is
zero to four or more decimal places and when successive values of e agree
to four or more significant figures. The corresponding value of e is called
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epmax. Calculate Zpmax from Zpmax = (Rp/R)(ymax + €kmemax)» as deducible from

equations (A39) with Zp = qp/R. Also calculate L/R from equation (5), and
calculate z /zg. Print "zp__ , L/R, and zp _ /z5 labeled "with

. “Pmax’“s max max
penetration.m

9. Generate and print values of the deceleration ratio np/npg for

selected values of x according to the first of equations (A41l) with auxili-
ary equations (A42), (A43), and (A45). The quantity Fpoa(e) is the integral
of equation (A45) or a constant according to the specification in step 1; and
€kas> Za, and pcka are the values of step 1. Step 9 terminates the basic
procedure when penetration is present.

SEARCH FOR OVERALL RADIUS R

The second computer procedure described is a design procedure in which
0o, 1s assumed given but iterations are automatically performed to determine
R for a desired ratio of stroke to available stroke. The desired ratio is
unity in the present case, that is, L/R = 0; but the available stroke leaves
a margin of safety based on the fictitious compacting strain eg4.

This procedure is based partially on a modified basic procedure. The
modifications include the specification of nggg/npg (i.e., the desired value
of npmax/nmd) and the determination and printout of 1z4 (i.e., the value of

z at np = anax) and B (i.e., (npmax/ndes) - 1). The quantity B8 is

calculated as a measure of the acceleration discrepancy.

The next step is to iterate the modified basic procedure just described
in order to achieve a low value of L/R. As a start, the procedure is run for
two values of R, the selection being based on the design charts, figures 6
through 9, or any other analytical or experimental information suggesting low
values of L/R. The results are labeled (L/R); for R; and (L/R), for R,.
Then the iteration is based on successive straight lines of the form:

L/R=aR +b (D1)

For the starting values (L/R);, Ry and (L/R),, Ry, the first pair of
straight lines from equation (D1) is

(L/R); = aVry + p 1)
(L/R), = a(l)Rz + b(l)
and the computer determines a(l) and b(l) by solving the two simultaneous

equations. From equation (D1) for L/R = 0 (which is the desired value), the

computer then determines R(l) as
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R - ()00,

Then R(l) is run through the modified basic procedure to determine (L/R)(l),
This result is combined with the two starting values, and the two having the
lowest absolute values of L/R are selected for a new pair of starting values.
The process is repeated until

|L/R| < 0.0005

provided that each new value of |L/R| is lower than at least one of its two
starting values.

If a new value of |L/R| is higher than either of its starting values,
the computing machine is stopped, and new starting values must be selected.
This did not happen for any of the cases reported herein, all of which con-
verged rapidly (requiring an average of 0.17 min of execute time per case
without penetration and 4.55 min for the detailed model with penetration).

In contrast, there was one unrelated case that did not converge. For this
case, however, convergence could not have been expected. It turned out that
the given impact velocity was too high for a feasible energy absorbing design
with the given material, and hence too high for a solution.

SEARCH FOR OVERALL RADIUS - R AND CRUSHING STRESS S

The third computer procedure used herein is a search for R and o , which
is simply an extension of the search for R just described (except that pene-
tration is not included since eq. (28) determines o, for penetration). In
the search for R and oy, both R and o, are varied in an attempt not only to
make L/R = 0 but also to make B = 0, where B8 = 0 when the maximum accelera-
tion load factor Np ox equals the desired load factor Ngeg -

This additional requirement, B8 = 0, makes the iterations more complicated
than before although the modified basic procedure to be iterated is the same.
This time the starting values are found by running the basic procedure for
three combinations of R and ¢,. Again, one of the starting values can be
determined by the design charts for the simplified model, figures 6 through 9,
together with modifications based on experience for other models and/or other
preliminary information (such as analyses or experiments performed on similar
configurations). Experience indicates that the other two starting values
should be small deviations from the first in which the higher values of og
correspond to the lower values of R. The starting values are labeled (L/R);
and 8; for Ry and og;, (L/R), and 8, for R, and 002, and (L/R)3 and Bj3
for Rz and op3. The iterations are based on successive pairs of planar
surfaces having the form

L/R = ajgoo + apRR + aj, (D2)

™
I

= aggly * agpR + ag (D3)
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For the three sets of starting values just labeled, the first group of
three planes from equation (D2) is

Ly _ .M (1)
R), © a; %01 + arn Ri + a

(1)
L

(1) (1) (1)
ay 7902 * app Ry + 2y

(%)3 353)003 + aéé)Rg + aEl)
LD

and the computer solves the three simultaneous equations to determine Lo
2

/x-l r‘\ TN
>~ T
I

afé), and aﬁl). Similarly, the first group of three planes from equation (D3)

is . a§33001 oWy, 4 o)
Ba = aéé)ooz + aéé)Rz + aé%)
B3 = aé;)oog + aéé)R3 + aél)

and the computer determines aé;), aéé), and aél).

Then L/R and B are set equal to the desired value of 0 in equations
(D2) and (D3), and the coefficients just determined are substituted to give

aﬁé)gél) . afé)R(l) - _aél)

1
NONOM NEONCM —aé )
The computer then solves the two simultaneous equations and determines

(hopefully) an improved pair of parameters cgl) and R(l).

The parameters ogl) and R(l) are introduced into the modified basic

procedure to determine the corresponding values of (L/R)(l) and 6(1). This

result is combined with the three sets of starting values, and the three hav-
ing the lowest values of |L/R| + IB[ are selected for new starting values.

The process is repeated until

IL/R| < 0.0005

lg] < 0.0005

with the requirement that each new value of |L/R| + |g] is lower than at
least one of its three starting values.
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The computing machine is stopped, analogously to the R search, if a
new value of |L/R| + |[B| 1is higher than any of its starting values; and new
starting values must be selected (where the selection can often be facilitated
by a plot having R and o, as axes with values of |L/R| + |B] indicated by
vectors or with values of L/R and B indicated by vectors). In contrast to
the R search, new starting values had to be selected fairly frequently for
the search for R and oy (specifically, for roughly one-fourth of the cases),
despite the fact that convergence was rapid when it occurred (0.7 min of exe-
cute time per case for the detailed model).

For all but one of the cases requiring a new set of starting values,
convergence occurred for the second or third set. The exceptional case (not
listed in table 1) was an attempt to do the detailed model by the R and o
search so as to match an Np ox of 2000 selected for the simplified model.

For the landing configuration under consideration, however, R searches for
different values of oy indicated that an Npoax &S high as 2000 cannot be

attained with the detailed model. Hence the iterative method would have been
wrong if it had converged to an Npoax of 2000 in a search for R and o,.
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APPENDIX E

EXACT INTEGRATION FOR A CLASS OF IMPACT PROBLEMS WITH

VARIABLE MASS BUT WITHOUT PAYLOAD PENETRATION

The class of impact problems to be considered is shown in figure 3(b).
This shows a general vertically symmetrical landing geometry for zero shear
resistance and uniform compacting strain with the impact to be described before
payload penetration occurs (if any). Equation (A19) defines the problem, and
all assumptions leading to that equation are retained.

One additional assumption is introduced, namely, a uniform and isotropic
crushing stress (o = ox = constant). Then equation (A19) becomes

1 o A ip 99

* mco - (kaVc/ak) U

d(U?) = g dq - &
PO

S

where the equation has been multiplied by dq and where V¢ has been
introduced according to the second of equations (Al4).

The area Aci;h is the planar area of crushable material that is flush
with the landing surface in figure 3(b), and V. 1is the volume of the dotted
region in figure 3(b). Hence,

Acih dg = dV¢ (E2)

When equation (E2) is introduced into equation (E1), each term in the latter
equation becomes a total differential, and the exact integration is

€0 )

k

log fm__ +m -
e\ po co €1

%—Uz = gq + + C (E3)

Pek

where C 1is a constant of integration. This constant can be evaluated by
noting that at q = 0, U = Up, and Vo = 0. When the evaluated C is intro-
duced in equation (E3), the result is

€, 0

1
5‘(U 2 - Uz) = ~-gq +

c
- [pck Jf Ash dhc/gk(mpo ¥ mco):l

0

g
where V. has been replaced by Jﬁ Agh dhe as in the second of
equations (Al4). 0
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Equation (E4) gives U in terms of q and can be simplified if the gq
term is neglected (as is justified for most impacts). Then it is convenient
to reintroduce V; and let it be the only variable on the right-hand side.
Thus,

€,0

1 k'k 1
5 (Ug2 - U2) = log - (ES)
2 Pek el [pckvc/ak(mpo ¥ mco)]
When U = 0, Ve has reached its maximum value, chax' Thus, with the natural
log converted to an exponential:
_ 2
o M) (o Uo7 2849y )
Ve = 1-e (E6)
max Pk

It is implicit in the derivation of equation (A13) that V¢ + Vep = Vi/ey,
where Ve; 1is the volume of m¢; in figure 3(b); and the same relationship
applies for the maximum volumes. Hence, if it is desired, equation (E6) can
be written

(E7)
max max pck

2
_ Mpo T Mo [% ) e-(pckuo /Zekck)]

Equation (E7) agrees exactly with equation (1-4) in appendix A of
reference 2 when notational differences are accounted for. The development in
reference 2 includes shear resistance implicitly (by showing uplift of the
compacted region in a figure) but counteracts the inclusion of shear by assum-
ing Ac; to be a horizontal planar area and thereby rendering the shear
stresses ineffective in energy absorption. Thus, with the results in agree-
ment and the assumptions reconciled, the development of equations (E4) through
(E7) becomes a partial check on the present methods as well as a set of exact
results for a special case of variable mass in the absence of payload
penetration.
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Stress

Average crushing stress, o
B

Typical material

{a) Stress-strain curves.

v

Load

]/-Plote

| Crushed material

material
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(b) Crushing test with plate.

Load
Plunger

M//-Crushed material

L7 7777 7777777777777/ 7777777777777777

(c) Crushing test with plunger.

Assumed
material
Compacting
strain, €
A l
5 1.0
Strain

———Uncrushed crushable

_—Uncrushed crushable material

Figure 1.- Typical stress-strain curves and crushing tests.
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Qmax=meax=€d(R_RP)
Upper boundary of
compacted material
if €, were replaced

20 — by €,
h quX
0.8 Compacted material
- based on €,
NN O —
o
3 B
o+ 8
o
2 -
&
N~— 6
P
o| E -
(URRY]
N——
= 4
<
Wl
15 |
o
N——
ln
b
£ 2
1 I T T N O
0 2 4 6 8 1.0
quX
Zmax = TR

Figure 7.- Mass design chart for simplified model without penetration when R
is given,
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Upper boundary of
compacted material
if €, were replaced
by €4

CRRH IO R,
oINS IO IONN S

Compacted material
based on €,

(

npmax

Figure 8.- Radius ratio design chart for simplified model without penetration
when Rp is given.

72




dmax=9pmax = €d(R-Rp)
Upper boundary of
compacted material
if €., were replaced

t)Y' ffd

o
FR R IRETEI

14 — Compacted material
based on €,

S
N
J’\ue 0]
N——
< 8
W |y
(2] O
vm D
o 6
[
° 4
.
2¢
| | | I | I | | I
0 I 2 3 4 5 6 7 8 S

Figure 9.- Mass design chart for simplified model without penetration when Rp
is given.

73

e




o |

Figure 10.- Dimensionless stroke at which penetration begins for simplified
model without bonding.
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Mco
Woo (i)
mCO Wco po mpo

3= =
Pem TRy (Pem3e) TR (B0 TR 2

1000 Nmo =

Nmo-

- SEA ( Mco
B nPmax Gme

mpo> for payload penetration
B with Fpo(e)=|, IOCK:Oa €K:|

100

IR T

l ' 1 i I | |
2 3 4 5 6 1 8
Rp/R

Figure 12.- Mass design chart for simplified model with penetration when Rp
is given; also simple mass-volume relation.
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Honeycomb-like material

Wpo =100 Ib €,=0.8

Npmax = 2000 €4 =0.7
L, = 300 ft/sec

Weo SEA

o ¢ Simplified model

0 A Detailed model }wi’rhou’r penetration
N

800 — o Simplified model with penetration
==
38 700 - I3xl(?3
— c
c o
=4 =
© 600 —l2 o
> 3
—_— L0
= 5 S
5 500 m LU=
£ [T
[ ')} <
= L
S 400 o0 £
n (&
3 ()
[ Q
O n

I I I I | g
300.5 5 7 8 9 1.0

Payload radius, Rp , ft

I I I I
l10.5 6965 4665 32.75

Payload packaging density, pp e » Ib/ft3

(2) W., and SEA
co

Figure 13.- Crushable casing properties and performance as functions of R

and Ppge for honeycomb-like material, a payload weight of 100 1b, and a
payload maximum load factor of 2000.
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Overall radius, R, ft

See part (a) for design conditions

R Oo

2.5

no n
N &\

n

2.0

o ¢ Simplified model
O & Detailed model

} without penetration

N o Simplified model with penetration

5 6 g .8 9 1.0

Payload radius, Rp , ft

I | I |
105 6965 4665 32.75

Payload packaging density, ,op de Ib/ft3

(b) R and o

Figure 13.- Continued.
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Maximum crushing stress, O, , psi
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ql:)max

Maximum value of payload displacement, qp

?

at which penetration occurs or
would occur if unbonded

dp

See part (a) for design conditions

Pcm9e 9pmax /s

© N Simplified model with penetration
O e

2 gler?(ﬂllgldedmgwdoec:el} without penetration
B —15
B —14
B —13
B 12
B i —

I | l I I
— |

.5 .6 .7 .8 .9 LO O

Payload radius, Rp , ft

I | | |
0.5 ©69.65 4665 32.75

Payload packaging density, ppge, Ib/ft3

(©) quax/qs and Pcm8e

Figure 13.- Concluded.

Crushable material density, p.q, 9e » Ib/ft3
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Balsa-like material

Wpo =450 Ib €n =08

SEA = 24,000 ft Ib/Ib €4 =07

Up = 300 ft/sec Npmax < 2000
Ty = 800 psi

_ 3} without penetration
Pom Je = 3.84 Ib/ft

o, = 1200 psi

0. g, =5.76 b/§t3 } with penetration
cm e '

Undefined transitions for
700 — curves with unbonded payload
(may require o, < 1200 psi with
penetration and o, > 800 psi
without penetration)

O

— 600 —

(o]

(8]

=

=

o 500

[}

z

©

S

g 400 —

@

O

2

[ O Simplified model ; ,
— t t trat

g 300 O Detailed model without penetration

D Simplified model
O Detailed model

8 .0 .2 1.4 1.6

Payload radius , Ry, ft

I I l |
074 6215 3915  26.23

Payload packaging density , Pp e ,Ib/ff3

with penetration

(a) Weo

Figure 14.- Crushable casing properties and performance as functions of RP and
Ppge for balsa-like material and a payload weight of 450 1b.
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Overall radius, R, ft

3.6

34

Ol
N

o
)

2.8

2.6

See part (a) for design conditions

O Simplified model without penetration
O Detailed model
N Simplified model} , .
O Detailed model with penetration
Undefined transitions for
curves with unbonded payload
[ (may require o, < 1200 psi with
penetration and o, > 800 psi
without penetration)
I I I |
.8 1.O 1.2 1.4 1.6
Payload radius, Rp , ft
I I I |

107.4 62.15 3915 26.23

Payload packaging density, Pp 9e lb/f’r3

(b) R

Figure 14.- Continued.
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Payload maximum load factor, M b max

82

2000

@
o
o

1600

1400

1200

1000
.8

See part (a) for design conditions

Maximum permissible n

Undefined transitions for
curves with unbonded payload
(may require o < 1200 psi with
penetration and o, > 800 psi
without penetration)

O Simp.lified model without penetration
[0 Detailed model
N Simplified model} ith penetrati
O Detailed model with penetration
| | I |
1.0 [.2 1.4 1.6

Payload radius, Rp » ft

| | | |
074 6215 3915  26.23

Payload packaging density, Pp 9e Ib/f’r3

(c) Prax

Figure 14.- Continued.




See part (a) for design conditions

9pmax _ Maximum value of payload displacement, dp
dg dp at which penetration occurs or would occur if unbonded
4 — . ep
O Simplified model } without penetration
O Detailed model
N Simplified model} with penetration
O Detailed model
3 -
9pmax o |—
s
I N
o | | | |
.8 1.0 1.2 1.4 .6
Payload radius , Rp , ft
l I I |
107.4 62.15 39.15 26.23
. . 3
Payload packaging density, ppge, Ib/ft
(@) ap,../ds
Figure 14.- Concluded.
NASA-Langley, 1970 — 32 A-3335

O

83




